• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献 >>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

多参数MR为基础的CNN模型预测肝细胞性肝癌的微血管侵犯

CNN model based on multi-parameter MR in predicting microvascular invasion of HCC

摘要:

目的 采用基于多参数磁共振序列的卷积神经网络(convolutional neural network,CNN)联合传统影像组学标签及临床指标,术前预测肝细胞性肝癌(hepatocellular carcinoma,HCC)患者的微血管侵犯(microvascular invasion,MVI).方法 选择经病理确诊的HCC患者275例纳入本研究.将数据集随机分为训练集(n=192)和测试集(n=83).应用CNN技术,融合二维多参数磁共振肿瘤图像、三维肿瘤的传统影像组学特征标签及临床指标,开发一种HCC的MVI预测分类器.应用受试者工作特征曲线(receiver operating characteristic,ROC),比较混合模型(ModelCom)与卷集神经网络模型(ModelD)、影像组学模型(ModelR)和临床模型(ModelC)的诊断效能.结果 ModelD在训练集和测试集中的AUC分别为0.914和0.842,优于ModelC(训练集:P<0.001;测试集:P=0.032)和ModelR(训练集:P<0.001;测试集:P=0.044).ModelCom在训练集和测试集中的AUC分别为0.951和0.881,在训练集中优于ModelD(P=0.012),在测试集中差异无统计学意义(P=0.157).校准曲线显示出了 ModelCom具有良好的拟合优度(hosmer-lemeshow test,训练集P=0.402,测试集P=0.689).决策曲线分析提示ModelCom鉴别MVI阳性和MVI阴性的净获益高于其他模型.结论 CNN为基础的混合模型够准确预测HCC的MVI状态.

更多
  • 浏览:1
  • 下载:2

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学网小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学网小程序

使用
帮助
Alternate Text
调查问卷
Baidu
map