• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献 >>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于半监督网络的前交叉韧带损伤膝关节磁共振诊断辅助研究

Diagnosis of anterior cruciate ligament injuries in MRI images based on semi-supervised residual network deep learning

摘要:

目的 本研究基于半监督算法残差网络(semi-supervised algorithm Residual network,SMRNet)的深度学习方法,探索其在计算机辅助自主分析膝关节MRI诊断前交叉韧带(anterior cruciate ligament,ACL)损伤方面的应用.方法 使用100名经过关节镜确认的ACL损伤患者和100名关节镜确认无ACL损伤的患者的术前MRI图像.在选取适当层面后,裁剪并用于SMRNet的训练.SMRNet对单个MRI切片上ACL损伤的概率进行最终判断.4名临床医师对相同图像进行读片诊断.结果 SMRNet分类的敏感性、特异性、准确性、阳性预测值和阴性预测值分别为97.00%、94.00%、95.50%、94.17%和96.91%.医师的整体阅片情况类似,敏感性区间91.00%~96.00%、特异性区间90.00%~94.00%、准确性区间90.50%~95.00%、阳性预测值区间90.09%~94.12%、阴性预测值区间90.90%~95.92%,二者差异无统计学意义(P>0.05).结论 经过训练的SMRNet模型在ACL损伤检测上超越部分临床医师,为膝关节MRI诊断提供高效可靠方法,展现深度学习在医学影像的潜力.未来,SMRNet有望成为膝关节MRI诊断的重要工具,为患者提供更精准的诊疗方案.

更多
作者: 危俊杰 [1] 张程远 [2] 姜智瀚 [1] 刘坤 [1] 孔薇 [1] 袁锋 [3]
分类号: R684
栏目名称: 临床研究
DOI: 10.12289/j.issn.2097-4345.23379
发布时间: 2024-09-11
基金项目:
上海市科委项目 上海市申康医院发展中心项目 上海市浦东新区卫生健康委员会项目 上海健康医学院校级科研项目
  • 浏览:0
  • 下载:0

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学网小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学网小程序

使用
帮助
Alternate Text
调查问卷
Baidu
map