• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献 >>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

基于Transformer深度学习模型在医学图像分割中的研究进展

Research Progress on Transformer-Based Deep Learning Models for Medical Image Segmentation

摘要:

医学图像的准确分割在现代临床影像检查、精准诊断和治疗规划中意义至关重要.近10年来,卷积神经网络(CNN)凭借其独特的特征提取能力,在医学图像分割领域成绩显著.CNN架构中存在的局部感受野和固有归纳偏置局限,限制其对图像中远程依赖关系的有效建模.近年来,Transformer架构依赖其对全局信息的捕获能力,有助于建模长距离的依赖关系并挖掘语义信息,在生物医学图像分割领域展示出卓越的性能和巨大潜力.在此,对Transformer架构的组成及其在医学图像分割中的应用进行了全面综述,从全监督、无监督和半监督的角度出发,对Transformer架构在医学图像的腹部多器官分割、心脏分割和脑肿瘤分割中的运用价值及性能进行了归纳分析,并对Transformer模型在分割任务中存在的局限不足进行了概括总结,最后对其未来发展趋势及优化路径进行了探讨展望.

更多
作者: 周腊珍 [1] 陈红池 [1] 李秋霞 [1] 李坊佐 [2]
作者单位: 赣南医科大学医学信息工程学院,江西 赣州 341000 [1] 赣南医科大学医学信息工程学院,江西 赣州 341000;赣南医科大学,心脑血管疾病防治教育部重点实验室,江西赣州 341000 [2]
期刊: 《中国生物医学工程学报》2024年43卷4期 467-476页 ISTICPKUCSCD
分类号: R318
栏目名称: 综述
DOI: 10.3969/j.issn.0258-8021.2024.04.009
发布时间: 2024-09-05
基金项目:
国家自然科学基金 江西省自然科学基金 赣南医科大学科研启动基金
  • 浏览:2
  • 下载:1

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学网小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学网小程序

使用
帮助
Alternate Text
调查问卷
Baidu
map