• 医学文献
  • 知识库
  • 评价分析
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
  • 临床诊疗知识库
  • 中医药知识库
  • 机构
  • 作者
热搜词:
换一批
论文 期刊
取消
高级检索

检索历史 清除

医学文献 >>
  • 全部
  • 中外期刊
  • 学位
  • 会议
  • 专利
  • 成果
  • 标准
  • 法规
知识库 >>
  • 临床诊疗知识库
  • 中医药知识库
评价分析 >>
  • 机构
  • 作者
热搜词:
换一批

A hybrid system to predict brain stroke using a combined feature selection and classifier

A hybrid system to predict brain stroke using a combined feature selection and classifier

摘要:

Background:Brain stroke is a serious health issue that requires timely and accurate prediction for effective treatment and prevention. This study described a hybrid system that used the best feature selection method and classifier to predict brain stroke.Methods:The Stroke Prediction Dataset from Kaggle was used for this study. Synthetic minority over-sampling technique (SMOTE) analysis was used to accomplish class balancing. Accuracy, sensitivity, specificity, precision, and the F-Measure were the main performance parameters considered for investigation. To determine the best combination for predicting brain stroke, the performance of five classifiers, Na?ve Bayes (NB), support vector machine (SVM), random forest (RF), adaptive boosting (Adaboost), and extreme gradient boosting (XGBoost), was compared along with three feature selection techniques, mutual information (MI), Pearson correlation (PC), and feature importance (FI). The performance parameters were assessed using k-fold cross-validation.Results:The hybrid system proposed in this study identified a reduced set of features that were able to effectively predict brain stroke. FI provided a feature reduction ratio of 36.3%. The most successful hybrid system for predicting brain stroke used FI as the feature selection technique and RF as the classifier, achieving an accuracy of 97.17%.Conclusion:The proposed system predicted brain stroke with high accuracy. These findings could be used to inform the early detection and prevention of brain stroke, allowing healthcare professionals to provide timely and targeted care to at-risk patients.

更多
作者: Bathla Priyanka [1] Kumar Rajneesh [1]
作者单位: Department of Computer Science Engineering, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India [1]
栏目名称: Research Article
DOI: 10.1016/j.imed.2023.06.002
发布时间: 2024-09-10
  • 浏览:0
  • 下载:0

加载中!

相似文献

  • 中文期刊
  • 外文期刊
  • 学位论文
  • 会议论文

加载中!

加载中!

加载中!

加载中!

特别提示:本网站仅提供医学学术资源服务,不销售任何药品和器械,有关药品和器械的销售信息,请查阅其他网站。

  • 客服热线:4000-115-888 转3 (周一至周五:8:00至17:00)

  • |
  • 客服邮箱:yiyao@wanfangdata.com.cn

  • 违法和不良信息举报电话:4000-115-888,举报邮箱:problem@wanfangdata.com.cn,举报专区

官方微信
万方医学网小程序
new翻译 充值 订阅 收藏 移动端

官方微信

万方医学网小程序

使用
帮助
Alternate Text
调查问卷
Baidu
map