您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览187 | 下载0

目的 通过建立SARIMA模型,探讨该模型在手足口病发病率预测中的应用,为疾病预防控制部门制定防控策略提供理论依据.方法 应用SPSS 20.0软件包对乌鲁木齐市2009年1月1日至2014年12月31日手足口病月发病率进行初步平稳化处理并建立季节性ARIMA模型.结果 通过对参数和模型的拟合优度检验及残差白噪声序列检验,最终确定模型为SARIMA(1,0,0)(1,1,0)12,该模型能较好的对以往发病率进行拟合,真实值均在预测值的95%置信区间内.结论 SARIMA(1,0,0)(1,1,0)12模型能够较准确地预测手足口病发病趋势,但若要获得更为准确的预测信息,则需要使用多模型联合的方法来预测.

作者:杨建东;樊旭成;秦丽岩;芮宝玲

来源:公共卫生与预防医学 2016 年 27卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:187 | 下载:0
作者:
杨建东;樊旭成;秦丽岩;芮宝玲
来源:
公共卫生与预防医学 2016 年 27卷 1期
标签:
SARIMA模型 手足口病 监测 预警 SARIMA model Hand-foot-mouth disease Surveillance Early warning
目的 通过建立SARIMA模型,探讨该模型在手足口病发病率预测中的应用,为疾病预防控制部门制定防控策略提供理论依据.方法 应用SPSS 20.0软件包对乌鲁木齐市2009年1月1日至2014年12月31日手足口病月发病率进行初步平稳化处理并建立季节性ARIMA模型.结果 通过对参数和模型的拟合优度检验及残差白噪声序列检验,最终确定模型为SARIMA(1,0,0)(1,1,0)12,该模型能较好的对以往发病率进行拟合,真实值均在预测值的95%置信区间内.结论 SARIMA(1,0,0)(1,1,0)12模型能够较准确地预测手足口病发病趋势,但若要获得更为准确的预测信息,则需要使用多模型联合的方法来预测.

Baidu
map