您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览189 | 下载71

目的:比较3种预测模型在中国梅毒疫情预测中的效果,筛选最优预测模型。方法:收集2004年至2012年中国梅毒发病率数据,构建灰色模型[GM(1,1)]、趋势外推模型和求和自回归滑动平均(ARIMA)模型,比较预测值和实际值的吻合程度;用2013年发病率数据回代验证,选择相对误差最小的模型预测2014年至2016年的梅毒发病率。结果:中国梅毒发病率呈整体上升趋势,年平均发展速度为1.173,但环比增长速度逐年降低。趋势外推模型中Cubic函数的拟合效果优于GM(1,1),二者对历史数据拟合的平均相对误差分别为1.431%和7.560%。梅毒年发病率序列为白噪声序列(χ2=7.990,P=0.239),不适合用ARIMA模型来预测。采用Cubic 函数预测2014年至2016年中国梅毒的发病率,分别为29.553/10万、26.293/10万和20.831/10万。结论:Cubic函数对中国梅毒发病率的预测效果最好。

作者:王小丽;杨永利;施学忠;万燕丽;毛赛彩;王莹;惠晓庆;田翔宇

来源:郑州大学学报(医学版) 2015 年 2期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:189 | 下载:71
作者:
王小丽;杨永利;施学忠;万燕丽;毛赛彩;王莹;惠晓庆;田翔宇
来源:
郑州大学学报(医学版) 2015 年 2期
标签:
梅毒 发病率 预测 syphilis incidence rate forecasting
目的:比较3种预测模型在中国梅毒疫情预测中的效果,筛选最优预测模型。方法:收集2004年至2012年中国梅毒发病率数据,构建灰色模型[GM(1,1)]、趋势外推模型和求和自回归滑动平均(ARIMA)模型,比较预测值和实际值的吻合程度;用2013年发病率数据回代验证,选择相对误差最小的模型预测2014年至2016年的梅毒发病率。结果:中国梅毒发病率呈整体上升趋势,年平均发展速度为1.173,但环比增长速度逐年降低。趋势外推模型中Cubic函数的拟合效果优于GM(1,1),二者对历史数据拟合的平均相对误差分别为1.431%和7.560%。梅毒年发病率序列为白噪声序列(χ2=7.990,P=0.239),不适合用ARIMA模型来预测。采用Cubic 函数预测2014年至2016年中国梅毒的发病率,分别为29.553/10万、26.293/10万和20.831/10万。结论:Cubic函数对中国梅毒发病率的预测效果最好。

Baidu
map