您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览147 | 下载0

目的 探讨自回归移动平均(autoregressive integrated moving average model,ARIMA)乘积季节模型在盐城市手足口病发病趋势预测的可行性.方法 利用盐城市2009年1月至2015年12月的手足口病月发病率建立ARIMA乘积季节模型,并对2016年手足口病发病趋势进行预测.结果 盐城市手足口病预测模型为ARIMA(1,0,1)(1,1,0)12,该模型的参数估计具有统计学意义,拟合优度检验统计量最小Normalized BIC=2.997,残差序列检验统计量Ljung-Box=20.692(P>0.05),残差为白噪声,模型能够拟合出手足口病的发病趋势,且实际值都在95%可信区间内,但模型拟合的平均误差率为41.296%,检验模型预测效果的平均误差率为23.998%,模型预测精度高于拟合精度.结论 运用ARIMA乘积季节模型能够对盐城市手足口病发病趋势进行预测和动态分析,对手足口病预防控制产生积极的指导作用.

作者:李峰;陈胤忠;徐士林;陈国清;杨长庆;李长城;金辉

来源:疾病监测 2016 年 31卷 10期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:147 | 下载:0
作者:
李峰;陈胤忠;徐士林;陈国清;杨长庆;李长城;金辉
来源:
疾病监测 2016 年 31卷 10期
标签:
ARIMA乘积季节模型 手足口病 预测 ARIMA product seasonal model Hand foot and mouth disease Prediction
目的 探讨自回归移动平均(autoregressive integrated moving average model,ARIMA)乘积季节模型在盐城市手足口病发病趋势预测的可行性.方法 利用盐城市2009年1月至2015年12月的手足口病月发病率建立ARIMA乘积季节模型,并对2016年手足口病发病趋势进行预测.结果 盐城市手足口病预测模型为ARIMA(1,0,1)(1,1,0)12,该模型的参数估计具有统计学意义,拟合优度检验统计量最小Normalized BIC=2.997,残差序列检验统计量Ljung-Box=20.692(P>0.05),残差为白噪声,模型能够拟合出手足口病的发病趋势,且实际值都在95%可信区间内,但模型拟合的平均误差率为41.296%,检验模型预测效果的平均误差率为23.998%,模型预测精度高于拟合精度.结论 运用ARIMA乘积季节模型能够对盐城市手足口病发病趋势进行预测和动态分析,对手足口病预防控制产生积极的指导作用.

Baidu
map