您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览148 | 下载0

目的 建立适合预测我国手足口病月报告发病人数的自回归求和移动平均(ARIMA)乘积季节模型,并评价其预测效果.方法 收集2010年3月至2017年7月我国手足口病月发病报告人数资料.通过R软件使用2010年3月至2017年1月的数据建立ARIMA乘积季节模型,并用2017年2-7月手足口病月发病报告人数评估该模型的预测效果,并对2017年8-12月的数据进行预测.结果 我国手足口病月发病报告数呈明显的周期性,且以24个月为一个周期重复,不具有长期趋势;建立了ARIMA(1,0,1)(0,1,1)24模型对我国手足口病月发病报告数进行预测;通过将预测数据与实际数据相比较,该模型预测绝对误差的平均值和相对误差的平均值分别为22 505.47和15.71%.结论 基于本研究的数据,ARIMA(1,0,1)(0,1,1)24模型可以拟合我国手足口病的月报告发病人数,可用于预测;同时也可为我国制定手足口病方面的防控措施以及评价防控效果提供科学的参考依据.

作者:郑代坤;谭毅;李佳;王军;马帅;沈忠周

来源:疾病监测 2018 年 33卷 1期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:148 | 下载:0
作者:
郑代坤;谭毅;李佳;王军;马帅;沈忠周
来源:
疾病监测 2018 年 33卷 1期
标签:
手足口病 白回归求和移动平均模型 预测 Hand,foot and mouth disease Autoregressive integrated moving average model Prediction
目的 建立适合预测我国手足口病月报告发病人数的自回归求和移动平均(ARIMA)乘积季节模型,并评价其预测效果.方法 收集2010年3月至2017年7月我国手足口病月发病报告人数资料.通过R软件使用2010年3月至2017年1月的数据建立ARIMA乘积季节模型,并用2017年2-7月手足口病月发病报告人数评估该模型的预测效果,并对2017年8-12月的数据进行预测.结果 我国手足口病月发病报告数呈明显的周期性,且以24个月为一个周期重复,不具有长期趋势;建立了ARIMA(1,0,1)(0,1,1)24模型对我国手足口病月发病报告数进行预测;通过将预测数据与实际数据相比较,该模型预测绝对误差的平均值和相对误差的平均值分别为22 505.47和15.71%.结论 基于本研究的数据,ARIMA(1,0,1)(0,1,1)24模型可以拟合我国手足口病的月报告发病人数,可用于预测;同时也可为我国制定手足口病方面的防控措施以及评价防控效果提供科学的参考依据.

Baidu
map