您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览167 | 下载19

目的 探讨时间序列模型在甲肝发病预测的应用,为下一步采取防控措施提供科学依据. 方法 基于宜昌市2005-2015年逐月甲肝发病率建立两种模型,对2016年甲肝的发病率进行预测,并将预测值与实际值进行拟合评价.结果 ARIMA模型首先要求数据平稳,宜昌市的甲肝发病存在季节性波动,为不平稳序列,但2010年之后数据较为平稳,经对2010-2015年甲肝月发病率进行季节性差分、差分处理,新数列为平稳序列(游程检验法Z=1.447,P=0.148),然后进行参数估计(BIC=-4.293)和白噪声检验(Q=22.150,P=0.138),据此建立ARIMA模型,ARIMA(0,0,1)(0,1,1)12模型为最优模型,能较好的模拟甲型病毒性肝炎的发病. 结论 ARIMA(0,0,1)(0,1,1)12模型能较好的模拟甲肝发病在时间序列的变化趋势,为制定科学的防控措施和策略提供依据.

作者:刘继恒;贺圆圆;张皓;周红雨

来源:实用预防医学 2017 年 24卷 8期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:167 | 下载:19
作者:
刘继恒;贺圆圆;张皓;周红雨
来源:
实用预防医学 2017 年 24卷 8期
标签:
时间序列模型 甲肝 预测 time series model viral hepatitis A prediction
目的 探讨时间序列模型在甲肝发病预测的应用,为下一步采取防控措施提供科学依据. 方法 基于宜昌市2005-2015年逐月甲肝发病率建立两种模型,对2016年甲肝的发病率进行预测,并将预测值与实际值进行拟合评价.结果 ARIMA模型首先要求数据平稳,宜昌市的甲肝发病存在季节性波动,为不平稳序列,但2010年之后数据较为平稳,经对2010-2015年甲肝月发病率进行季节性差分、差分处理,新数列为平稳序列(游程检验法Z=1.447,P=0.148),然后进行参数估计(BIC=-4.293)和白噪声检验(Q=22.150,P=0.138),据此建立ARIMA模型,ARIMA(0,0,1)(0,1,1)12模型为最优模型,能较好的模拟甲型病毒性肝炎的发病. 结论 ARIMA(0,0,1)(0,1,1)12模型能较好的模拟甲肝发病在时间序列的变化趋势,为制定科学的防控措施和策略提供依据.

Baidu
map