目的:探讨基于CT图像影像组学列线图模型预测肺浸润性腺癌(IAC)分化程度的价值及免疫组化因子在肿瘤不同分化程度间的表达差异。方法:收集2017年12月至2018年9月南京医科大学附属淮安第一医院经手术病理证实为肺IAC患者的临床病理资料。对所有勾画感兴趣区进行高通量特征采集,经最小绝对收缩算子降维处理后构建预测模型。采用受试者工作特征曲线评估临床特征模型、影像组学模型及两者联合的个体化预测模型鉴别肺IAC分化程度的预测效能,免疫组化Ki-67、NapsinA、甲状腺转录因子1(TTF-1)在IAC不同分化程度的组间比较采用秩和检验。结果:全组IAC病灶中共提取出396个高通量特征,筛选出10个泛化能力较高、与IAC分化程度相关的特征。训练组低分化IAC的影像组学评分平均值(1.206)高于中高分化患者(0.969,
P=0.001),测试组低分化IAC的影像组学评分平均值(1.545)高于中高分化患者(-0.815,
P<0.001)。中高分化IAC组和低分化IAC组患者的性别(
P<0.001)、胸膜牵拉征(
P=0.005)、毛刺征(
P=0.033)差异均有统计学意义。多因素logistic回归分析显示,性别、胸膜牵拉征与IAC分化程度有关(均
P<0.05)。临床特征模型由年龄、性别、胸膜牵拉征、毛刺征、肿瘤血管征、空泡征组
作者:单文莉;孔丹;张辉;张建东;段绍峰;郭莉莉
来源:中华肿瘤杂志 2022 年 44卷 7期