您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览155 | 下载0

目的 探讨自回归求和移动平均模型(Autoregegressive integrated maving average model,ARIMA)在北京市西城区手足口月发病率中预测应用的可能性.方法 利用2008-2016年北京市西城区手足口病月发病率建立ARIMA模型并进行拟合,根据模型对2017年12个月的发病率进行预测.结果 西城区手足口病月发病率的ARIMA模型为ARIMA(0,0,1)(1,1,0)12,其中BIC=2.361,Ljung-Box Q=20.380(P=0.204),模型中的参数检验差异有统计学意义.2016年7-12月实际月发病率与模型预测值基本吻合,预测值与实际值的平均绝对误差为20.42%.利用该模型进行预测,2017年发病高峰为5-7月.结论 ARIMA(0,0,1)(1,1,0)12模型可以较为准确地预测短期内西城区手足口病发病趋势,为防控工作的开展提供指导.

作者:李依恬;乔富宇

来源:职业与健康 2018 年 34卷 7期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:155 | 下载:0
作者:
李依恬;乔富宇
来源:
职业与健康 2018 年 34卷 7期
标签:
手足口 ARIMA模型 预测 Hand-foot-mouth disease Autoregegressive integrated maving average model Prediction
目的 探讨自回归求和移动平均模型(Autoregegressive integrated maving average model,ARIMA)在北京市西城区手足口月发病率中预测应用的可能性.方法 利用2008-2016年北京市西城区手足口病月发病率建立ARIMA模型并进行拟合,根据模型对2017年12个月的发病率进行预测.结果 西城区手足口病月发病率的ARIMA模型为ARIMA(0,0,1)(1,1,0)12,其中BIC=2.361,Ljung-Box Q=20.380(P=0.204),模型中的参数检验差异有统计学意义.2016年7-12月实际月发病率与模型预测值基本吻合,预测值与实际值的平均绝对误差为20.42%.利用该模型进行预测,2017年发病高峰为5-7月.结论 ARIMA(0,0,1)(1,1,0)12模型可以较为准确地预测短期内西城区手足口病发病趋势,为防控工作的开展提供指导.

Baidu
map