您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览28 | 下载28

目的:探讨基于多序列磁共振成像(magnetic resonance imaging,MRI)手工影像组学(hand-crafted radiomic,HCR)和深度迁移学习(deep transfer learning,DTL)特征的机器学习(machine learning,ML)模型在术前预测脑胶质瘤分级的效能.方法:选取BraTS2019数据集中332例患者的影像数据[高级别胶质瘤(high-grade glioma,HGG)258例,低级别胶质瘤(low-grade glioma,LGG)74例],随机抽取30例HGG和8例LGG作为测试数据集,其余294例作为训练集和验证集.从T1、T2、T1c和Flair序列中提取病灶的HCR特征和DTL特征,并筛选出影响力前10的特征子集,基于HCR特征、DTL特征和两者组合的深度学习影像组学(deep learning radiomics,DLR)特征,分别建立7种ML模型,评估模型预测HGG和LGG的效能.选择最佳模型后,使用SHAP法对模型特征重要性进行量化及归因分析.结果:基于HCR和DTL组合的DLR特征构建的ML模型预测效能最高,当使用支持向量机的递归特征消除(support vector machine-recursive feature elimination,SVM-RFE)筛选特征后,使用T2+T1c+Flair序列组合的支持向量机(support vector machine,SVM)分类器的预测模型效果最佳.在验证集上,受试者工作特征曲线下面积达到0.996(95%CI:0.991~1.000),约登指数、准确度、灵敏度和特异度分别为0

作者:刘志鹏;降建新;吴琪炜;周炎;卞雪峰;朱银杏

来源:南京医科大学学报(自然科学版) 2024 年 44卷 3期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:28 | 下载:28
作者:
刘志鹏;降建新;吴琪炜;周炎;卞雪峰;朱银杏
来源:
南京医科大学学报(自然科学版) 2024 年 44卷 3期
标签:
脑胶质瘤 磁共振成像 手工影像组学 深度迁移学习 深度学习影像组学 预测模型 gliomas magnetic resonance imaging hand-crafted radiomic deep transfer learning deep learning radiomics predic-tion model
目的:探讨基于多序列磁共振成像(magnetic resonance imaging,MRI)手工影像组学(hand-crafted radiomic,HCR)和深度迁移学习(deep transfer learning,DTL)特征的机器学习(machine learning,ML)模型在术前预测脑胶质瘤分级的效能.方法:选取BraTS2019数据集中332例患者的影像数据[高级别胶质瘤(high-grade glioma,HGG)258例,低级别胶质瘤(low-grade glioma,LGG)74例],随机抽取30例HGG和8例LGG作为测试数据集,其余294例作为训练集和验证集.从T1、T2、T1c和Flair序列中提取病灶的HCR特征和DTL特征,并筛选出影响力前10的特征子集,基于HCR特征、DTL特征和两者组合的深度学习影像组学(deep learning radiomics,DLR)特征,分别建立7种ML模型,评估模型预测HGG和LGG的效能.选择最佳模型后,使用SHAP法对模型特征重要性进行量化及归因分析.结果:基于HCR和DTL组合的DLR特征构建的ML模型预测效能最高,当使用支持向量机的递归特征消除(support vector machine-recursive feature elimination,SVM-RFE)筛选特征后,使用T2+T1c+Flair序列组合的支持向量机(support vector machine,SVM)分类器的预测模型效果最佳.在验证集上,受试者工作特征曲线下面积达到0.996(95%CI:0.991~1.000),约登指数、准确度、灵敏度和特异度分别为0

Baidu
map