您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览58 | 下载12

目的 探索重症老年患者(≥60岁)急性肾损伤早期连续风险预测的可行性,促进机器学习在临床决策支持中的应用.具体实现以6 h为单位连续预测重症老年患者在未来48 h的急性肾损伤发病风险,并探索可实现何种程度的早期预测,以及比较当前数据和累积数据的预测效果.方法 基于重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅲ,应用逻辑回归、支持向量机、随机森林和轻量梯度提升机(light gradient boosting machine,LightGBM)建模预测.基于曲线下面积(area under curve,AUC)、精确度和召回率进行结果评估.结果 共11261条重症老年患者记录纳入研究.基于当前6 h数据预测时,LightGBM的AUC达0.845~0.925,随机森林、支持向量机和逻辑回归的最高AUC均低于0.73.基于入重症监护病房最初6 h数据,LightGBM效果最好,AUC达0.845.LightGBM应用当前数据比累积数据获得更高的AUC、精确度和召回率,随机森林、支持向量机和逻辑回归反之.结论 利用LightGBM对重症老年患者进行急性肾损伤早期连续预测切实可行,仅基于重症监护病房前6 h数据的预测结果就可以达到24 h积累数据的预测效果.此外,不同模型对数据的接收能力和适用性不同,LightGBM在当前数据中表现优于累积数据,其他3种模型在累积数据中表现

作者:邬金鸣;孙海霞;王嘉阳;钱庆

来源:首都医科大学学报 2022 年 43卷 4期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:58 | 下载:12
作者:
邬金鸣;孙海霞;王嘉阳;钱庆
来源:
首都医科大学学报 2022 年 43卷 4期
标签:
机器学习 疾病预测 急性肾损伤 电子病历 重症监护病房
目的 探索重症老年患者(≥60岁)急性肾损伤早期连续风险预测的可行性,促进机器学习在临床决策支持中的应用.具体实现以6 h为单位连续预测重症老年患者在未来48 h的急性肾损伤发病风险,并探索可实现何种程度的早期预测,以及比较当前数据和累积数据的预测效果.方法 基于重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅲ,应用逻辑回归、支持向量机、随机森林和轻量梯度提升机(light gradient boosting machine,LightGBM)建模预测.基于曲线下面积(area under curve,AUC)、精确度和召回率进行结果评估.结果 共11261条重症老年患者记录纳入研究.基于当前6 h数据预测时,LightGBM的AUC达0.845~0.925,随机森林、支持向量机和逻辑回归的最高AUC均低于0.73.基于入重症监护病房最初6 h数据,LightGBM效果最好,AUC达0.845.LightGBM应用当前数据比累积数据获得更高的AUC、精确度和召回率,随机森林、支持向量机和逻辑回归反之.结论 利用LightGBM对重症老年患者进行急性肾损伤早期连续预测切实可行,仅基于重症监护病房前6 h数据的预测结果就可以达到24 h积累数据的预测效果.此外,不同模型对数据的接收能力和适用性不同,LightGBM在当前数据中表现优于累积数据,其他3种模型在累积数据中表现

Baidu
map