您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览378 | 下载119

目的 使用时间序列分解法建立数学模型对北京市朝阳区细菌性痢疾报告发病率按"周"进行预测,并评价模型的预测效果.方法 首先使用时间序列分解法剔除时间序列的季节变动因素(S_t),然后对剔除季节因素后的时间序列通过模型识别、参数估计及检验、白噪声检验等过程,建立求和自回归移动平均模型(ARIMA),最后将S_t和ARI-MA相乘得到预测模型.结果 对朝阳区2008年细菌性痢疾报告发病率建立预测模型为S_t×ARIMA(2,1,3),预测的平均误差为-0.06,平均相对误差为2.32

作者:崔树峰;马建新;李书明

来源:中国卫生统计 2009 年 26卷 6期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:378 | 下载:119
作者:
崔树峰;马建新;李书明
来源:
中国卫生统计 2009 年 26卷 6期
标签:
细菌性痢疾 时间序列 求和自回归移动平均模型 预测 Bacillary dysentery Time series Auto regressive integrated moving average(ARIMA) model Prediction
目的 使用时间序列分解法建立数学模型对北京市朝阳区细菌性痢疾报告发病率按"周"进行预测,并评价模型的预测效果.方法 首先使用时间序列分解法剔除时间序列的季节变动因素(S_t),然后对剔除季节因素后的时间序列通过模型识别、参数估计及检验、白噪声检验等过程,建立求和自回归移动平均模型(ARIMA),最后将S_t和ARI-MA相乘得到预测模型.结果 对朝阳区2008年细菌性痢疾报告发病率建立预测模型为S_t×ARIMA(2,1,3),预测的平均误差为-0.06,平均相对误差为2.32

Baidu
map