您的账号已在其他设备登录,您当前账号已强迫下线, 如非您本人操作,建议您在会员中心进行密码修改
深度神经网络(DNN)作为人工智能最主要的分支,是基于模仿人脑思考方式的计算机程序,旨在模拟人类大脑处理信息的方式对事物进行分类或预测.DNN的通用性表现为:自我学习、自适应、联想记忆,即使没有先验背景也可以执行各种任务.近年来DNN受到国内外医学界的广泛重视,尤其在精准分类肿瘤细胞数字图像的自动识别方面已经取得了重大突破,DNN通过强化学习并因此获得经验,使医生能够向患者提供准确的诊疗方案.本文主要综述了DNN技术在肿瘤细胞识别的最新研究进展,详细阐述卷积神经网络、深度信念网络、生成对抗网络、深度残差网络的原理及其应用实例,比较基于不同模型的神经网络,对各类模型在应用层面上的精准度和性能进行分析,提出DNN在肿瘤细胞识别领域中面临的问题及未来的发展趋势.
作者:纪春阳;徐秀林;王燕
来源:中国医学物理学杂志 2019 年 36卷 9期
临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。
知识库介绍
临床诊疗知识库现支持机构用户及个人包时用户开通服务。如需开通机构账号,请机构管理员联系我们,联系电话:010-58882667;个人包时开通请直接点击“个人包时订购”,开通后即可使用。
相似文献