您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览241 | 下载262

目的:探讨基于钆塞酸二钠增强MRI肝胆期影像组学特征的不同机器学习模型术前预测肝细胞癌(HCC)微血管侵犯(MVI)的价值。方法:回顾性分析2015年6月至2020年6月在苏州大学附属第一医院经病理证实的132例HCC患者的资料,MVI阳性72例、阴性60例。按照7∶3的比例以随机种子法分为训练集和验证集。利用PyRadiomics软件提取肝胆期图像影像组学特征,采用最小绝对收缩和选择算子(LASSO)回归5折交叉验证法对训练集临床和影像组学特征进行筛选,得到最优特征子集,然后用6种机器学习方法(决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络)构建预测模型,采用ROC曲线评估模型的预测能力,采用DeLong检验比较6种机器学习算法曲线下面积(AUC)的差异。结果:经LASSO回归筛选后获得14个特征组成最优特征子集,包括2个临床特征(肿瘤最大径和甲胎蛋白)和12个影像组学特征。训练集中基于最优特征子集构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络模型预测HCC MVI的AUC值分别为0.969、1.000、1.000、0.991、0.966和1.000,验证集的AUC值分别为0.781、0.890、0.920、0.806、0.684和0.703。验证集中,极端梯度提升与广义线性模型、神经网络的AUC的差异有统计学意

作者:郁义星;王希明;胡春洪;范艳芬;胡梦洁;诗涔;朱默;张妤;胡粟

来源:中华放射学杂志 2021 年 55卷 8期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:241 | 下载:262
作者:
郁义星;王希明;胡春洪;范艳芬;胡梦洁;诗涔;朱默;张妤;胡粟
来源:
中华放射学杂志 2021 年 55卷 8期
标签:
癌,肝细胞 磁共振成像 影像组学 机器学习 微血管侵犯 Carcinoma, hepatocellular Magnetic resonance imaging Radiomics Machine learning Microvascular invasion
目的:探讨基于钆塞酸二钠增强MRI肝胆期影像组学特征的不同机器学习模型术前预测肝细胞癌(HCC)微血管侵犯(MVI)的价值。方法:回顾性分析2015年6月至2020年6月在苏州大学附属第一医院经病理证实的132例HCC患者的资料,MVI阳性72例、阴性60例。按照7∶3的比例以随机种子法分为训练集和验证集。利用PyRadiomics软件提取肝胆期图像影像组学特征,采用最小绝对收缩和选择算子(LASSO)回归5折交叉验证法对训练集临床和影像组学特征进行筛选,得到最优特征子集,然后用6种机器学习方法(决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络)构建预测模型,采用ROC曲线评估模型的预测能力,采用DeLong检验比较6种机器学习算法曲线下面积(AUC)的差异。结果:经LASSO回归筛选后获得14个特征组成最优特征子集,包括2个临床特征(肿瘤最大径和甲胎蛋白)和12个影像组学特征。训练集中基于最优特征子集构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络模型预测HCC MVI的AUC值分别为0.969、1.000、1.000、0.991、0.966和1.000,验证集的AUC值分别为0.781、0.890、0.920、0.806、0.684和0.703。验证集中,极端梯度提升与广义线性模型、神经网络的AUC的差异有统计学意

Baidu
map