-
Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia(Orobanchaceae)
编辑人员丨2023/12/30
Brandisia is a shrubby genus of about eight species distributed basically in East Asian evergreen broadleaved forests(EBLFs),with distribution centers in the karst regions of Yunnan,Guizhou,and Guangxi in southwestern China.Based on the hemiparasitic and more or less liana habits of this genus,we hypothesized that its evolution and distribution were shaped by the development of EBLFs there.To test our hypothesis,the most comprehensive phylogenies of Brandisia hitherto were constructed based on plastome and nuclear loci(nrDNA,PHYA and PHYB);then divergence time and ancestral areas were inferred using the combined nuclear loci dataset.Phylogenetic analyses reconfirmed that Brandisia is a member of Orobanchaceae,with unstable placements caused by nuclear-plastid incongruences.Within Brandisia,three major clades were well supported,corresponding to the three subgenera based on morphology.Brandisia was inferred to have originated in the early Oligocene(32.69 Mya)in the Eastern Himalayas-SW China,followed by diversification in the early Miocene(19.45 Mya)in karst EBLFs.The differentiation dates of Brandisia were consistent with the origin of keystone species of EBLFs in this region(e.g.,Fagaceae,Lauraceae,Theaceae,and Magnoliaceae)and the colonization of other character-istic groups(e.g.,Gesneriaceae and Mahonia).These findings indicate that the distribution and evolution of Brandisia were facilitated by the rise of the karst EBLFs in East Asia.In addition,the woody and parasitic habits,and pollination characteristics of Brandisia may also be the important factors affecting its speciation and dispersal.
...不再出现此类内容
编辑人员丨2023/12/30
-
Dispersal and germination of winged seeds of Brandisia hancei, a shrub in karst regions of China
编辑人员丨2023/8/5
Brandisia hancei (Paulowniaceae) is a widely distributed shrub in karst regions in southwestern China. Its seeds have a membranous wing, and they mature just before the rainy season begins. To assess the effect of the wing on seed dispersal and germination of B. hancei, we measured the dispersal distance at varying wind speeds and release heights, falling duration from different release heights, floating duration on still water, rates of imbibition of water, and drying and soil adherence to seeds. Germination experiments were conducted on intact and de-winged seeds immediately after harvest. The wing increased the falling duration in still air and the floating ability on water. Dispersal distance of winged and de-winged seeds did not differ at a wind speed of 2.8 m s-1, but at 3.6 and 4.0 m s-1 dispersal distances were greater for de-winged than for winged seeds. Seed wing had little effect of absorption and retention of water, but significantly increased soil adherence to the seeds. Mature seeds were non-dormant and germinated to over 90%with a mean germination time of about 10 days. By combining the environmental conditions in karst habitat with the seed traits of B. hancei, we conclude that dispersal and germination of winged seeds are adapted to the precipitation seasonality in heterogeneous habitats absence of soil.
...不再出现此类内容
编辑人员丨2023/8/5