您的账号已在其他设备登录,您当前账号已强迫下线,
如非您本人操作,建议您在会员中心进行密码修改

确定
收藏 | 浏览42 | 下载0

目的 基于前列腺核磁共振图像(MRI),构建深度学习智能分割模型,展开MRI图像下前列腺分区的智能分割研究.方法 收集山西省肿瘤医院2018年1月至2020年10月33例经MRI扫描的前列腺癌患者T2WI本地数据,包括T1期6例,T2期15例,T3期9例,T4期3例.选取荷兰奈梅亨拉德堡德大学医学中心提供的前列腺MRI公开数据集中前列腺癌患者的T2WI序列数据,共379例数据,所有数据按照7:1:2的比例随机划分为训练集265例、验证集38例和测试集76例.在Unet模型基础上以Vgg16模型为编码器,使用多层卷积层的同时利用迁移学习策略,构建Vgg16-Unet模型,以医师手工勾画和标注的前列腺分区(前纤维基质带、中央带、外周带、移形带)为金标准,在测试集上,采用Dice 相似系数(Dice similarity coefficient,DSC)、95%豪斯多夫距离(95%Hausdorff surface Distance,HD95)评估模型对前列腺分区的分割精度.结果 模型在测试集上对前纤维基质带、中央带、外周带、移形带实现了较为准确的分割,其平均DSC分别为56.95%、47.28%、80.78%、90.63%,平均HD95分别为20.84、20.02、15.39、11.20 mm.模型智能分割与手工标注测量的体积一致性较好,其差值均位于95%一致性区间内.结论 构建的Vgg16-Unet模型分割精度优于Unet、Unet++、ResUnet++3个Unet经典变种

作者:呼延若曦;吴哲;许杉杉;崔慧林;曹锡梅;马晋锋;吴毅;顾玮

来源:陆军军医大学学报 2023 年 45卷 13期

知识库介绍

临床诊疗知识库该平台旨在解决临床医护人员在学习、工作中对医学信息的需求,方便快速、便捷的获取实用的医学信息,辅助临床决策参考。该库包含疾病、药品、检查、指南规范、病例文献及循证文献等多种丰富权威的临床资源。

详细介绍
热门关注
免责声明:本知识库提供的有关内容等信息仅供学习参考,不代替医生的诊断和医嘱。

收藏
| 浏览:42 | 下载:0
作者:
呼延若曦;吴哲;许杉杉;崔慧林;曹锡梅;马晋锋;吴毅;顾玮
来源:
陆军军医大学学报 2023 年 45卷 13期
标签:
深度学习 前列腺肿瘤 智能分割 核磁共振成像 deep learning prostate tumor intelligent segmentation magnetic resonance image
目的 基于前列腺核磁共振图像(MRI),构建深度学习智能分割模型,展开MRI图像下前列腺分区的智能分割研究.方法 收集山西省肿瘤医院2018年1月至2020年10月33例经MRI扫描的前列腺癌患者T2WI本地数据,包括T1期6例,T2期15例,T3期9例,T4期3例.选取荷兰奈梅亨拉德堡德大学医学中心提供的前列腺MRI公开数据集中前列腺癌患者的T2WI序列数据,共379例数据,所有数据按照7:1:2的比例随机划分为训练集265例、验证集38例和测试集76例.在Unet模型基础上以Vgg16模型为编码器,使用多层卷积层的同时利用迁移学习策略,构建Vgg16-Unet模型,以医师手工勾画和标注的前列腺分区(前纤维基质带、中央带、外周带、移形带)为金标准,在测试集上,采用Dice 相似系数(Dice similarity coefficient,DSC)、95%豪斯多夫距离(95%Hausdorff surface Distance,HD95)评估模型对前列腺分区的分割精度.结果 模型在测试集上对前纤维基质带、中央带、外周带、移形带实现了较为准确的分割,其平均DSC分别为56.95%、47.28%、80.78%、90.63%,平均HD95分别为20.84、20.02、15.39、11.20 mm.模型智能分割与手工标注测量的体积一致性较好,其差值均位于95%一致性区间内.结论 构建的Vgg16-Unet模型分割精度优于Unet、Unet++、ResUnet++3个Unet经典变种

Baidu
map