-
仅MRI模拟定位用于鼻咽癌放疗计划剂量计算的可行性分析
编辑人员丨1周前
目的:评估采用单一MRI模拟定位实现鼻咽癌光子和质子放疗计划剂量计算的可行性。方法:回顾性分析2020年1月至2021年12月在中国医学科学院肿瘤医院接受放射治疗的100例鼻咽癌患者的T 1加权MRI图像和CT图像。利用深度学习网络模型将MRI转换成伪CT,训练集、验证集和测试集分别包括70例、10例和20例。深度学习方法采用监督学习的卷积神经网络(CNN)和无监督学习的循环一致性生成对抗网络(CycleGAN)两种方法。利用平均绝对误差(MAE)和结构相似性(SSIM)等定量评估图像质量,利用γ通过率和剂量体积直方图(DVH)评估剂量。用Wilcoxon符号秩检验来统计分析伪CT的图像质量。 结果:图像生成方面,CNN和CycleGAN模型的MAE分别为(91.99±19.98)HU和(108.30±20.54)HU,SSIM分别为0.97±0.01和0.96±0.01。剂量学方面,伪CT用于光子剂量计算的准确性高于质子。光子放疗计划的γ通过率(3 mm/3%)分别为:CNN模型99.90%±0.13%,CycleGAN模型99.87%±0.14%,且均大于98%。质子放疗计划分别为:CNN模型98.65%±0.64%,CycleGAN模型97.69%±0.86%。DVH的指标显示,伪CT的光子计划中剂量数值一致性优于质子计划。结论:基于深度学习的模型能从MRI图像生成准确的伪CT,大多数剂量学差异都在光子和质子放疗的临床可接受范围内,只用MRI成像的工作流程对鼻咽癌患者放疗是可行的。但与原始CT相比,伪CT图像在鼻腔区域的CT值误差较大,临床使用时应特别注意。
...不再出现此类内容
编辑人员丨1周前
-
利用噪声等价图像和深度学习方法对低剂量CT降噪
编辑人员丨1周前
目的:研究在常规剂量扫描情况下模拟低剂量CT图像的方法,以此生成训练数据集中与常规剂量CT具有对应关系的低剂量CT图像,并建立深度学习模型,用于低剂量CT图像的降噪。方法:使用Philip Brilliance CT Big Bore模拟定位机,其不同算法重建的CT图像具有不同的噪声水平,其中iDose4算法噪声较大,而全模型迭代重建技术(iterative model reconstruction,IMR)噪声较小。提出一种以等价噪声水平重建图像替代低剂量CT图像的方法。常规剂量和低剂量CT的曝光量分别采用250和35 mAs。分别扫描CTP712均匀模块,用IMR算法重建低剂量CT图像,用不同降噪水平的iDose 4算法重建常规剂量CT图像,并根据噪声分布从中找出低剂量CT的噪声等价图像。随后,用常规剂量和噪声等价CT图像配对训练循环一致性生成对抗网络(cycle-consistent adversarial networks,CycleGAN),使用模体测试该方法对真实低剂量CT噪声的改善程度。 结果:用iDose 4 level 1重建的常规剂量CT图像可替代IMR重建的低剂量CT图像。低剂量扫描可降低86%的辐射剂量。使用CycleGAN模型降噪后,对于均匀模块,降噪幅度为45%;对于CIRS-SBRT 038模体的脑、脊髓和骨等处,噪声值分别降低了50%,13%和7%。 结论:等价噪声水平重建图像可用于替代低剂量CT图像训练深度学习网络,在避免受检者受照剂量增加的同时,减少图像噪声,提高图像质量。
...不再出现此类内容
编辑人员丨1周前
-
基于循环一致性生成对抗网络的盆腔伪CT生成方法
编辑人员丨2023/8/5
目的:基于循环一致性生成对抗网络(CycleGAN),利用非配对患者盆腔部位数据,实现MRI和CT图像之间的相互转换,并对基于该模型生成的盆腔伪CT(sCT)进行精度和剂量性能的评估.方法:该CycleGAN网络包含两个生成器和两个判别器.先基于全卷积网络(FCNs)构建两个生成器,一个将2D盆腔MRI转换为2D盆腔sCT图像,另一个将CT图像转换为伪MRI(sMRI)图像.再基于FCNs构建两个判别器,用于对真实图像和生成的伪图像进行判别,提升生成图像的质量.为保证sCT图像与MRI图像的一致性,引入归一化互信息作为相似性约束损失项,对模型进行改进.训练集包括35例患者盆腔部位的T1-MRI图像和另外36例患者盆腔部位的CT图像,测试集包括10例盆腔部位患者的MRI和CT图像,评估方法包括sCT与CT图像的误差和放疗剂量伽马通过率.结果:对于测试集中所有病例,生成的sCT与真实CT图像之间的平均绝对误差(MAE)为35.537(±4.537)HU;基于体素的平均剂量差异最大为0.49%;以3%/3 mm、2%/2 mm和1%/1 mm为标准的平均伽马通过率分别高于99%、98%和95%.结论:使用CycleGAN网络和非配对患者训练数据可以生成准确且符合临床剂量精度要求的盆腔部位sCT图像.
...不再出现此类内容
编辑人员丨2023/8/5
-
融合感知损失的深度学习在常规MR图像转换的研究
编辑人员丨2023/8/5
目的:研究在完全无监督的条件下深度神经网络实现常规磁共振图像间相互转换的可行性.方法:在循环生成式对抗网络(CycleGAN)中引入感知损失,使网络利用对抗损失学习图像结构信息的同时,结合循环一致性损失和感知损失生成高质量的磁共振图像,并将生成图像与CycleGAN模型以及有监督的CycleGAN模型(S_CycleGAN)生成的图像进行定量比较.结果:引入感知损失后的网络生成的图像定量评估值均高于CycleGAN模型生成的图像,生成的T1加权图像(T1WI)的定量评估值也均高于S_CycleGAN模型生成的T1WI,生成的T2加权图像(T2WI)与S_CycleGAN模型生成的T2WI的定量评估值相似.结论:在CycleGAN中引入感知损失,可以在完全无监督的条件下生成高质量的磁共振图像,进而实现高质量的常规磁共振图像的相互转换.
...不再出现此类内容
编辑人员丨2023/8/5
-
基于改进环形生成对抗网络的浅地层剖面去噪方法
编辑人员丨2023/8/5
为解决浅地层剖面数据噪声多、分辨率低问题,本文将环形生成对抗网络的方法应用于浅地层剖面资料的去噪,实现智能去噪.首先,选择具有特殊对称生成对抗网络循环机制以及"循环一致性"损失的环形生成对抗性网络,并对其进行结构改进,提升网络学习和训练的性能.然后,基于优化的浅地层剖面样本集训练网络,实现对于浅地层剖面数据随机噪声的去除,提升数据的信噪比.通过对实验和实际资料的试算,以及与传统带通滤波方法的对比,验证本文方法对浅地层剖面数据去噪的有效性和适应性.
...不再出现此类内容
编辑人员丨2023/8/5
-
基于先验信息感知学习的能谱CT及物质定量智能成像算法
编辑人员丨2023/8/5
目的 提出一种基于先验信息感知学习的能谱CT半监督物质定量智能成像算法(SLMD-Net),以提升能谱CT及物质定量成像精度和质量,并降低数据驱动网络对标签数据的依赖性.方法 算法框架包括监督子模块和自监督子模块.在监督子模块中,基于少量标签数据和均方误差损失函数学习构建从低信噪比数据到高信噪比数据的映射关系;在自监督子模块中,针对大量无标签低信噪比基物质图像数据,采用基于图像恢复模型构建损失函数,并纳入基物质图像数据的先验信息,以全变分(TV)模型刻画图像的先验信息.两个子模块合并构成SLMD-Net并通过临床仿真数据评估可行性和有效性.结果 与模型驱动的物质定量成像方法(FBP-DI、PWLS-PCG、E3DTV),数据驱动的物质定量成像方法,如基于监督学习的物质定量成像方法(SUMD-Net和BFCNN),基于无监督学习的物质定量成像方法UNTV-Net以及基于半监督的循环一致性生成对抗网络(Semi-CycleGAN)相比,SLMD-Net在视觉和定量评估上均有明显优势,如在水物质定量成像结果和骨物质定量成像结果中,SLMD-Net获得最高的PSNR指标(31.82和29.06)、最高的FSIM指标(0.95和0.90)以及最低的RMSE指标(0.03和0.02),且图像质量评分与其他7种对比方法分解性能的差异具有统计学意义(P<0.05).SLMD-Net的物质定量性能可接近于使用两倍数量级标签数据训练的SUMD-Net.结论 少量标签数据和大量无标签低信噪比基物质图像数据可被充分利用训练网络,有效抑制能谱CT基物质分解过程中产生的强噪声伪影,降低数据驱动网络对标签数据的依赖性,具有更广阔的临床应用前景.
...不再出现此类内容
编辑人员丨2023/8/5
