-
基于卷积神经网络实现锥形束CT牙齿分割及牙位标定
编辑人员丨1个月前
目的:利用卷积神经网络实现基于锥形束CT(cone-beam computed tomography,CBCT)体素数据的牙齿实例分割和牙位标定.方法:本文所提出的牙齿算法包含三个不同的卷积神经网络,网络架构以Resnet为基础模块,首先对CBCT图像进行降采样,然后确定一个包含CBCT图像中所有牙齿的感兴趣区域(region of interest,ROI).通过训练模型,ROI利用一个双分支"编码器-解码器"结构网络,预测输入数据中每个体素所对应的相关空间位置信息,进行聚类后实现牙齿的实例分割.牙位标定则通过另一个多类别分割任务设计的U-Net模型实现.随后,在原始空间分辨率下,训练了一个用于精细分割的U-Net网络,得到牙齿的高分辨率分割结果.本实验收集了 59例带有简单冠修复体及种植体的CBCT数据进行人工标注作为数据库,对牙齿算法的预测结果使用实例Dice相似系数(instance Dice similarity coefficient,IDSC)用来评估牙齿分割结果,使用平均 Dice 相似系数(the average Dice simi-larity coefficient,ADSC)评估牙齿分割及牙位标定的共同结果并进行评定.结果:量化指标显示,IDSC为89.35%,ADSC为84.74%.剔除了带有修复体伪影的数据后生成了有43例样本的数据库,训练网络得到了更优良的性能,IDSC为90.34%,ADSC为87.88%.将得到的结果进行可视化分析,牙齿算法不仅可以清晰地分割出CBCT中牙齿的形态,而且可以对牙齿的分类进行准确的编号.结论:该牙齿算法不仅可以成功实现三维图像的牙齿及修复体分割,还可以准确标定所有恒牙的牙位,具有临床实用性.
...不再出现此类内容
编辑人员丨1个月前
-
基于改进Mask R-CNN的牙齿识别与分割
编辑人员丨2023/8/5
针对当前的研究方法在牙齿全景X光片上提取的信息较为单一,而未曾考虑将牙齿的类别信息与形状位置信息融合提取的问题,提出一种实例分割方法同时实现牙齿识别与分割.主要通过融合跳跃结构和SE(Squeeze and Excitation)模块对Mask R-CNN实例分割模型中的分割分支进行改进,并以牙齿功能与FDI牙位两种类别编码方式,采用400张牙齿全景X光片数据进行实验仿真.实验结果表明改进后的模型相比于其他模型,可以同时有效地进行牙齿分类和分割,实现牙齿类别、形状、位置信息的融合提取,改善了Mask R-CNN实例分割模型在分割分支中语义信息提取不足的问题.
...不再出现此类内容
编辑人员丨2023/8/5
