-
Y186F突变对光受体蛋白古紫质-4质子传输和能量转换的影响
编辑人员丨2023/8/6
光驱动质子泵是一类以视黄醛为主要发色团的七-跨膜光敏受体蛋白,其功能是利用质子由胞内输送到胞外所形成的氢离子浓度梯度,通过ATP的合成将光能转化为化学能.本研究以细菌古紫质-4(archaerhodopsin-4,aR4)为研究对象,旨在探究位于视黄醛结合口袋的芳香性残基酪氨酸186 (Y186)对其质子泵功能以及能量转换效率的影响.利用重叠延伸PCR技术构建Y186FL33-aR4突变体,并通过紫外-可见光吸收光谱、动力学瞬态吸收光谱以及ATP生成率测定等手段,对RCL33-aR4 (recombinant aR4)和Y186FL33-aR4突变体进行对比研究.研究表明,相较于RCL33-aR4,Y186FL33-aR4突变体的紫外-可见光谱最大吸收峰发生了4nm的蓝移,M中间态寿命延长了约5倍,O中间态寿命则延长了约2倍,同时突变之后造成了质子泵功能的明显减弱.此外,相较于重组RCL33-aR4菌株,Y186FL33-aR4突变体菌株的ATP生成率约降低了36.5%.因此可以判定,位于视黄醛结合口袋的Y186是一个对质子传输和能量转换起重要作用的芳香性残基
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(1)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.本文从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(2)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.本文从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(3)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(4)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(5)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(6)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,期间细菌之间的横向基因转移起了重要作用.从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(7)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
光合作用中光反应的机制和由来(8)
编辑人员丨2023/8/6
光合作用是地球上绝大多数生物赖以生存的生命活动.结合于蛋白质分子上的叶绿素辅基在受到光照时会射出电子,将结合于同一蛋白上的醌分子还原成为氢醌.氢醌分子中的高能电子再流过一条位于生物膜上的“电子传递链”,其间释放的能量则被用于将氢离子从生物膜的一侧转移至另一侧,形成跨膜氢离子梯度.氢离子从膜的一侧流回另一侧时,就可驱动位于膜上的酶合成高能化合物三磷酸腺苷(ATP),为各种生命活动提供能量.叶绿素辅基射出的电子还可变为还原力强的氢原子,为细胞合成有机物所用.光合作用的过程虽然非常复杂,但其中的基本机制和成分早就在细菌中发展出来了.叶绿素可能是从合成血红素的化学反应链演变而来;进行光反应的蛋白,很可能是从原来电子传递链中直接与醌分子作用的细胞色素b变化而来;而光系统Ⅰ又从光系统Ⅱ演化而来.光合作用出现的时间非常早,发生在原核生物中的细菌与古菌分化之后的细菌中,又发生在细菌大规模分化之前,其间细菌之间的横向基因转移起了重要作用.从分子角度介绍光合作用中光反应的机制及其形成的过程.
...不再出现此类内容
编辑人员丨2023/8/6
