-
青藏高原高寒草地不同植物功能群与土壤碳同位素特征及影响因素
编辑人员丨2024/7/13
青藏高原海拔高、面积广,是全球范围内最典型的高寒地区之一,探究青藏高原高寒草地植物和土壤碳稳定同位素组成(δ13 C)特征及其控制要素,对深刻理解高寒生态系统碳循环过程具有重要意义.研究采集并测定了青藏高原不同区域 135 个草地样点中的植物和土壤碳稳定同位素自然丰度,探讨了不同植物功能群和表层(0-10 cm)土壤δ13 C特征及其与气候、土壤因素的关系.结果表明:(1)杂类草δ13C显著低于禾本科、莎草科和豆科植物δ13 C(P<0.05).表层土壤δ13 C与禾本科、莎草科、豆科植物δ13C呈显著正相关(P<0.05),与杂类草δ13C无显著相关关系,且表层土壤δ13C对三种植物功能群δ13C的敏感性为禾本科>豆科>莎草科.(2)在影响禾本科、莎草科、豆科植物和表层土壤δ13C的环境因子中,气候因子的相对贡献率均大于土壤因子,气候因子中太阳辐射相对贡献率最大,杂类草δ13C与气候和土壤因子均不存在显著相关关系.研究表明,太阳辐射是决定高寒草地生态系统植物和表层土壤δ13C的主要因子.研究可为青藏高原高寒草地植物和土壤δ13 C特征与有机碳动态循环提供数据支撑和理论参考.
...不再出现此类内容
编辑人员丨2024/7/13
-
喀斯特11种典型生态恢复树种凋落叶分解及其对土壤碳排放的激发效应
编辑人员丨2024/6/1
旨在探究喀斯特地区退化生态系统植被恢复树种凋落叶分解过程及其对土壤碳排放的激发效应,为选择合适的树种进行植被恢复提供数据支持.以中国林科院热带林业实验中心大青山石山树木园11种适应性强、耐干旱贫瘠的优良石山树种为研究对象,利用13C自然丰度法区分凋落叶和土壤来源CO2并量化土壤激发效应,比较不同生态恢复树种凋落叶分解及其激发效应的差异,探讨凋落物分解及其激发效应与凋落物性状之间的关联.结果表明:(1)11个生态恢复树种凋落叶在碳相关化学性质(水溶性碳、半纤维素和单宁含量等)、养分含量(磷和镁含量等)及化学计量特征(碳磷比和氮磷比)等方面均表现出较高程度变异.(2)不同生态恢复树种凋落叶分解及其诱导的土壤激发效应具有极显著差异(P<0.001);在整个培养实验期间,11个生态恢复树种凋落叶平均分解了 35.3%,其中海南椴分解最快,达到50%,而青冈栎分解最慢,仅分解16.5%.(3)总体上看,凋落叶处理的土壤呼吸速率(5.1 mg C kg-1 土壤d-1)是对照土壤呼吸速率(2.3 mg C kg-1 土壤d-1)的2.2倍,凋落叶添加显著促进土壤有机碳分解,平均达到37.6%;其中海南椴、割舌树和任豆凋落叶输入则抑制土壤有机碳分解(抑制程度分别为-13.2%、-6.9%和-22.5%),产生负激发效应.(4)凋落叶分解与非结构性碳(r=0.63,P=0.04)和水溶性碳(r=0.91,P<0.001)呈显著正相关,与叶干物质含量(r=0.64,P=0.03)、纤维素(r=0.62,P=0.04)和锰含量(r=-0.63,P=0.04)呈显著负相关.多元回归分析结果表明,水溶性碳、钾和钙含量相结合可以解释生态恢复树种凋落叶分解变异的98%;然而,凋落叶性状与土壤激发效应强度之间并没有显著相关性.从土壤养分归还角度考虑,喀斯特退化生态系统恢复树种可以选择光皮梾木、海南椴、顶果木和降香黄檀等凋落叶分解较快的树种,以促进土壤养分循环和植被恢复;另一方面,从土壤碳固持角度来看,海南椴、任豆和割舌树等凋落叶输入会抑制土壤有机碳分解,从而有利于提高退化生态系统土壤碳封存能力.
...不再出现此类内容
编辑人员丨2024/6/1
-
松毛虫虫食叶和排泄物对土壤激发效应的影响
编辑人员丨2023/12/16
昆虫冠层取食导致大量的虫食叶和排泄物输入到地表,对森林土壤碳循环产生重要影响.然而,目前关于虫食叶和排泄物影响土壤激发效应的研究仍十分匮乏.本研究以马尾松为对象,应用13C同位素自然丰度法研究马尾松凋落叶、松毛虫虫食叶和排泄物添加对土壤激发效应强度和方向的影响.结果表明:马尾松凋落叶、虫食叶和排泄物添加均促进土壤有机碳的分解,即产生正激发效应,且各处理之间差异显著.松毛虫排泄物诱导的累积激发效应最大,虫食叶次之,马尾松凋落叶诱导的累积激发效应最小.线性回归分析表明,在培养前期,激发强度与添加物全磷、缩合单宁、缩合单宁/P以及总酚含量呈显著正相关,与C/N、木质素/N、C/P、木质素/P呈显著负相关;在培养后期,激发强度与木质素含量呈显著负相关.综上,松毛虫虫害产生的虫食叶和排泄物提高了 土壤激发效应强度,且在不同培养阶段控制激发强度的主导因子不同,这有助于加深对虫害影响森林土壤碳循环的认知,并提高对虫害影响森林生态系统碳汇的估算精度.
...不再出现此类内容
编辑人员丨2023/12/16
-
黔西北次生林优势树种叶片-凋落物-土壤连续体有机质碳稳定同位素特征
编辑人员丨2023/8/6
稳定性碳同位素自然丰度(δ13C)能够揭示生态系统长时间尺度的有机碳动态变化,阐明生态系统功能的变化特征.以黔西北次生林14个优势树种为研究对象,测定叶片、凋落物以及根区土壤有机碳含量和δ13C值,分析不同层次碳含量和δ13C丰度之间的相关性.结果表明:14个优势树种叶片碳含量为404.67-487.14 g/kg,总体为针叶树种较高、常绿灌木较低;δ13C值为-31.2‰--27.1‰,随生活型的变化规律不明显.凋落物碳含量为414.62-561.31 g/kg,与叶片碳含量的变化规律较为一致;δ13C值为-31.5‰--27.3‰,随树种生活型的变化特征也不明显.根区土壤碳含量为10.02-91.59 g/kg,δ13C值为-26.8‰--22.5‰,碳含量以光皮桦、银白杨等落叶乔木较高.叶片、凋落物和根区土壤3个层次的碳含量与δ13C丰度之间均呈不显著相关,不同层次的δ13C丰度之间和碳含量之间均为正相关.研究结果有助于反映森林生态系统碳循环过程的关键信息,为森林植被恢复提供理论依据.
...不再出现此类内容
编辑人员丨2023/8/6
-
13C-标记秸秆添加对DNA稳定性同位素探针试验结果的影响
编辑人员丨2023/8/6
[目的]稳定性同位素探针技术(stable isotope probing,SIP)是采用稳定性同位素示踪复杂环境中具有代谢活性微生物的有力工具.然而,在近期利用SIP技术的研究当中,我们发现13C-标记物对试验本身有一定程度影响.例如研究土壤秸秆降解微生物,需将13C-标记作物秸秆添加到土壤,利用微域培养实验和DNA-SIP技术解析主导降解微生物物种.但是13C秸秆的添加以及不同土壤肥力水平是否会影响土壤微生物群落有待商榷.[方法]本研究采集江西鹰潭红壤试验站3种施肥处理(Control、NPK、OM)水稻土壤,分别添加自然丰度(12C)和13C-标记的高丰度水稻秸秆,进行微域培养试验,研究两种秸秆添加下的响应物种以及不同丰度C对生物质气体的累积排放、细菌α--多样性以及群落结构的影响.[结果]研究发现,3种施肥土壤下,2种丰度秸秆处理间C累计排放无差异.但是,寡营养条件(Control)下,13C-标记秸秆处理的细菌α-多样性高,12C秸秆处理群落异质性高,稳定性较差,无差异性物种;与12C秸秆处理相比,富营养条件(NPK和OM)下,13C-标记秸秆处理的细菌Oα-多样性和群落结构无差异,但存在差异物种,主要集中于变形菌门和稀有物种.[结论]本研究的结果表明13C标记秸秆对微生物群落有一定影响,因此在后续的SIP试验中,高丰度秸秆虽可被用来作为标记底物,但需慎用.
...不再出现此类内容
编辑人员丨2023/8/6
-
碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望
编辑人员丨2023/8/5
碳同位素示踪技术具有高度的专一性和灵敏度,经过几十年的发展,形成了一系列成熟的标记方法,在陆地生态系统碳循环过程的研究中已得到广泛应用.目前,自然丰度法、与13C贫化示踪技术结合的自由空气中气体浓度增加(FACE)实验、脉冲与连续标记法以及碳同位素高丰度底物富集标记法是研究陆地生态系统碳循环过程常用的碳同位素示踪方法;通过将长期定位实验和室内模拟实验结合,量化光合碳在植物-土壤系统的传输与分配特征,明确植物光合碳对土壤有机质的来源、稳定化过程的影响及其微生物驱动机制;阐明土壤碳动态变化(迁移与转化)和新碳与老碳对土壤碳库储量的相对贡献,评估有机碳输入、转化与稳定的生物与非生物微观界面过程机制.然而,生态系统碳循环受气候、植被、人为活动等多因素影响,碳同位素技术需要结合质谱、光谱技术实现原位示踪,结合分子生物学技术阐明其微生物驱动机制,从而构建灵敏、准确、多尺度、多方位的同位素示踪技术体系.因此,该文以稳定碳同位素为主,综述了碳同位素示踪技术的原理、分析方法和在陆地生态系统碳循环过程中的应用进展,归纳总结了碳同位素示踪技术结合原位检测技术和分子生物学技术的研究进展和应用前景,并对碳同位素示踪技术存在的问题进行了分析和展望.
...不再出现此类内容
编辑人员丨2023/8/5
-
土壤剖面碳氮稳定同位素自然丰度的垂直分布模式及其影响机制
编辑人员丨2023/8/5
土壤碳、氮稳定同位素自然丰度(δ13C和δ15N)随土壤深度变化的研究,对揭示碳、氮元素生物地球化学循环机制具有重要意义.本文在概述土壤剖面δ13C和δ15N垂直分布特征的基础上,重点介绍了土壤δ13C和δ15N垂直分布模式的影响机制.土壤剖面δ13C垂直分布模式的影响机制主要有3种:1)植被δ13C值的历史变化;2)植物群落C3-C4植物优势度变化;3)分解过程中13C富集的微生物源碳的积累.此外,讨论了13C休斯效应对土壤剖面δ13C垂直分布模式的影响.土壤剖面δ15N垂直分布模式的影响机制主要有4种:1)反硝化过程产生的15N贫化气体的损失;2)分解过程中15N富集的微生物源氮的积累;3)菌根将15N贫化的含氮化合物转移到植物而在深层土壤积累15N富集的菌根真菌残留物;4)土壤有机质-矿物相互作用.最后提出了未来土壤剖面碳、氮稳定同位素自然丰度的垂直分布模式研究应该关注的重点.
...不再出现此类内容
编辑人员丨2023/8/5
