-
基于BiSeNet的小儿超声心动图左心分割方法
编辑人员丨2023/8/6
小儿超声心动图分割是后续生物学参数测量与疾病诊断的关键一步.目前,这主要依赖于超声医生的手动分割,不仅耗时耗力,而且由于它的重复性与冗余性,常常会导致不准确的分割.深度学习方法在自然图像处理领域已经取得令人瞩目的成果,因此提出应用深度卷积神经网络,从小儿超声心动图中学习有效特征,进行左心关键解剖结构的分割.具体来说,提出使用双路径分割网络(BiSeNet),通过两路分支网络,分别提取低层和高层的特征,然后送人一个特征融合模块,筛选出有效的特征,从而得到准确的分割结果.在采集自深圳儿童医院超声科的包含87个超声心动图视频(2 216张图像)的数据集上进行验证,并与医生的标注结果进行比较.实验结果表明,BiSeNet可以提取到超声心动图中心脏结构的特征,它在左室和左房的分割任务上取得Dice系数高达0.914和0.887.这证明,所提出的方法可以帮助医生进行超声心动图分割,从而减轻医生的负担.
...不再出现此类内容
编辑人员丨2023/8/6
-
基于面部图像的有无早期肺癌风险分类研究
编辑人员丨2023/8/5
目的 通过对数据集进行目标区域分割、特征提取等操作,建立随机森林模型,以实现有无早期肺癌风险的分类研究.方法 使用BiSeNet算法实现图像分割,并将分割后的图像转换到YCbCr颜色空间模型[亮度(Y)、蓝色分量(CB)、红色分量(CR)]上,通过CB与CR 2个分量的取值寻找非肤色点,对非肤色点采用9×9均值滤波器进行滤波,并在该颜色模型下提取颜色特征值,再将图像转换到灰度空间,在其灰度共生矩阵上获取其纹理特征值.将这些特征值作为输入构造随机森林分类模型,构造随机森林时使用ID3算法构造决策树,通过调整决策树个数和最大特征数寻找最优分类模型.结果 BiSeNet面部图像分割准确率为96.25%;在YCbCr颜色空间上具有椭圆肤色聚类的特性,可以检测到非肤色点;经调整发现2个超参数决策树个数、最大特征数取值分别为30和4时,随机森林模型性能最优,其准确率能够达到87.34%.结论 通过面部的颜色特征以及文理特征信息,可以进行早期肺癌的分类研究,经实验分析肺癌患者面部红色特征以及文理特征与未患肺癌相比,存在显著差异,有助于有无早期肺癌的分类判断,为临床上早期肺癌的发现提供辅助依据.
...不再出现此类内容
编辑人员丨2023/8/5
