-
基于ConvNeXt模型的胸部X线图像的疾病分类与可视化
编辑人员丨6天前
目的 胸部X线是临床实践中常见的胸部疾病筛查和诊断方式.由于放射科医生长时间阅片容易视觉疲劳以及医疗资源分配不均衡的问题,导致误诊和漏诊的情况时有发生.针对这一问题,本研究运用深度学习技术,提出了一个基于ConvNeXt模型的胸部X线图像的疾病检测方法,旨在提高胸部疾病诊断准确度、减轻误诊风险并提高医生工作效率.方法 利用大规模公开胸部X线图像数据集ChestX-ray14训练ConvNeXt模型,该模型在ResNet模型的基础上,融合了视觉Transformer结构的优势,可以有效提高模型的特征提取和识别能力,同时以AUC(ROC曲线下方的面积)作为模型性能的评价指标,与已有的分类模型CheXNet、ResNet及Swin Transformer进行了对比.此外,通过引入Grad-CAM可视化方法,利用卷积神经网络特征图的梯度信息生成胸部X线图像的类激活热力图,实现对病灶区域的定位,从而提高医生的诊断效率.结果 基于ConvNeXt模型的诊断方法在识别14种胸部疾病时平均AUC值可达0.842,特别在识别积液(AUC值为0.883)、水肿(AUC值为0.902)和疝气(AUC值为0.942)等疾病时表现较为令人满意.结论 本文提出的方法在胸部X线图像的疾病检测中具有较好的性能,是一种对胸部X线图像进行胸部疾病诊断进而协助医生提高工作效率的有益尝试.
...不再出现此类内容
编辑人员丨6天前
-
基于深度学习ConvNeXt模型的冠心病痰湿证舌诊信息分类辨识
编辑人员丨1个月前
目的 通过卷积神经网络对冠心病痰湿证的舌象进行分类识别,提高冠心病痰湿证舌象识别准确率.方法 选取2020年10月至2022年8月在内蒙古自治区乌兰浩特市妇幼保健院、陕西中医药大学第二附属医院等地采集到的200例冠心病患者,其中痰湿证组、非痰湿证组各100例,运用ConvNeXt模型、朴素贝叶斯网络、K近邻模型、决策树算法、支持向量机模型进行舌象分类辨识.结果 不同模型的舌象分类平均准确度均在50%以上,ConvNeXt模型的平均准确度最高为89.44%;ConvNeXt模型验证集中痰湿证和非痰湿证2个类别的平均准确度、精确率、F1值和召回率均接近90%.结论 使用ConvNeXt模型进行舌象分类识别,能够较为准确地从舌诊上区分冠心病痰湿证与非痰湿证,客观化的人工智能识别技术,可以辅助冠心病痰湿证的临床诊断,有助于中医舌诊客观化研究的发展.
...不再出现此类内容
编辑人员丨1个月前
