-
基于双层字典学习的低剂量CT图像重建算法
编辑人员丨2023/8/6
目的 低剂量投影条件下的CT图像重建.方法 采用双层K-奇异值分解(K-singular value decomposition,K-SVD)字典训练的学习方法进行图像的超分辨率重建.字典学习方法中采用K-SVD算法,稀疏编码采用正交匹配追踪(orthogonal matching pursuit,OMP)算法.该算法首先利用训练库进行第一层字典训练,然后利用第一层训练的字典对低分辨率图像进行重建.进而将重建图像作为第二层待重建图像的输入,这样使得第二层输入图像含有较多的高频细节信息,因此能在重构的过程中恢复更多的细节信息,让高分辨率重构图像达到较好的效果.结果 双层字典重建效果明显优于K-SVD算法,重建图像更接近于原始高分辨率CT图像.结论 本研究对双层字典训练学习的框架进行反迭代投影的全局优化改进,改善了图像的重建质量.
...不再出现此类内容
编辑人员丨2023/8/6
-
基于双稀疏模型的压缩感知核磁共振图像重构
编辑人员丨2023/8/6
医学核磁共振图像重构技术是核磁共振成像领域的关键技术之一.压缩感知理论指出利用核磁共振图像的稀疏性能够从高度欠采样的观测值中精确重构图像.如何利用图像的稀疏性先验以及更多的先验知识来提高重构质量成为核磁共振成像的一个关键问题.本文根据综合稀疏模型和稀疏变换模型的相互补充作用,利用核磁共振图像在这两种模型下的稀疏性先验,将结合了综合稀疏模型与稀疏变换模型的双稀疏模型应用于压缩感知核磁共振图像的重构系统,提出了一种融合双字典学习的自适应图像重构模型.本文充分利用了图像在自适应综合字典学习和自适应变换字典学习下的两种稀疏先验知识,使用交替迭代最小化法对提出的模型进行分阶段求解,求解过程中引入了综合K-奇异值分解(K-SVD)算法和变换K-SVD算法.通过实验验证,与目前较好的核磁共振图像重构模型对比,本文提出模型的图像重构效果更好、收敛速度更快,且具有更好的鲁棒性.
...不再出现此类内容
编辑人员丨2023/8/6
