-
基于改进YOLOv7模型的肺结节检测
编辑人员丨5天前
目的:设计一种基于改进YOLOv7模型的肺结节检测算法。方法:首先,在PAFPN结构中,引入轻量化上采样算子CARAFE,以提高肺结节检测精度。然后添加一个增强型小尺度检测层,增强对于小目标肺结节的检测性能,同时可减少训练的参数量,并降低模型复杂程度。在保证各项参数指标不变的情况下,对YOLOv5原模型算法和添加增强型小尺度检测层的YOLOv5模型算法、YOLOv7原模型算法和改进后YOLOv7模型算法进行消融实验;对改进点训练集总损失进行比较;用YOLOv7原模型算法和改进后YOLOv7模型算法对2张测试集图片进行推理,将其与近年来其他经典的肺结节检测算法Mask R-CNN、YOLOv3、YOLOv5s和YOLOv7对2张测试集图片进行比较。结果:添加增强型小尺度检测层的YOLOv5模型算法精度比YOLOv5原模型算法提升了1.3%,召回率提高了3.5%,平均精度(mAP)上升了3.1%,参数量减少了25.3%,网络的复杂程度也有所减少。改进后YOLOv7模型算法mAP提高1.8%,参数量减少28.3%,模型复杂程度下降5 G。添加增强型小尺度检测层与替换特诊融合网络为轻量化上采样算子CARAFE算法在训练过程中的总损失最小。YOLOv7原模型算法精度较高,但是仍然出现了漏检与假阳性的情况,与预测图片1比较,YOLOv7原模型出现了漏检的情况;与预测图片2比较,YOLOv7原模型出现了假阳性的情况。而改进后YOLOv7模型对漏检情况和假阳性均得到了很好的改善;与经典模型算法比较,改进后YOLOv7模型算法的精度、召回率和mAP最高,分别为91.7%、89.1%、93.5%。结论:改进YOLOv7模型具有更强的特征表达能力,参数量更少,能够有效提高肺结节的检测精度。
...不再出现此类内容
编辑人员丨5天前
-
基于机器视觉和改进YOLOv5s的鲫病害轻量级无损检测模型
编辑人员丨2024/7/27
以鲫(Carassius auratus)常见病害为例,从实际生产角度出发,提出了一种基于机器视觉和改进YOLOv5s的鲫病害轻量级无损检测模型,可实现鲫鱼体多种病害的同步无损快速检测.首先,通过利用Shuf-fleNetV2替换YOLOv5s主干网络,对模型进行轻量化改进;在此基础上,耦合一种基于卷积块的注意力机制[Convolutional block attention module(CBAM)]提高模型精准度;最后,结合空洞空间卷积池化金字塔[Atrous spatial pyramid pooling(ASPP)]提升模型鲁棒性.通过在自制鲫病害数据集上测试可知,文章所提出模型病害检测精确率可达92.0%,模型体积仅为14400 kb,优于当前相关主流模型(最高精确率为83.6%,最小体积为15750 kb),为水产养殖鱼类病害无损快速检测提供了技术支撑.
...不再出现此类内容
编辑人员丨2024/7/27
-
基于改进YOLOv5s模型的车辆及行人检测方法
编辑人员丨2024/3/16
针对道路交通环境中车辆及行人目标较小或被遮挡造成的检测精度低以及误检、漏检问题,提出一种基于改进YOLOv5s模型的车辆及行人目标检测方法.针对小目标和遮挡目标,引入SIoU边界框损失函数,增加小目标检测层,增强对小尺度特征的获取;改进特征金字塔结构,增加横向特征图传递,并使用CSP stage替换C3_F特征提取网络,使其获得更多的语义信息和图形信息;改进后处理NMS算法,优化冗余边界框剔除方法,筛选出高质量检测结果.试验结果表明:改进YOLOv5s模型算法的Precision、Recall、mAP@0.5和mAP@0.5:0.95指标均优于Faster-RCNN、YOLOv3-tiny和YOLOv8s算法,与原YOLOv5s模型算法相比Precision下降了0.4%,但Recall、mAP@0.5和mAP@0.5:0.95提高了3.4%、2.1%和6.0%,分别达到了86.1%、92.9%和70.0%,对小目标和遮挡目标的检测效果明显提高,证明此改进方法有效解决了对小目标和遮挡目标检测精度低以及误检、漏检问题.
...不再出现此类内容
编辑人员丨2024/3/16
-
基于改进YOLOv5s的疲劳驾驶检测
编辑人员丨2024/3/16
针对驾驶员疲劳驾驶检测困难及检测精度低等问题,提出基于改进YOLOv5s的疲劳驾驶检测方案,以提高终端的边缘智能识别能力.以YOLOv5s为基础框架,通过改进损失函数,提高模型精度与鲁棒性;通过添加注意力机制模块,提高算法的特征提取能力和检测精度.开展基于改进EIoU损失函数和添加CBAM注意力模块的消融试验.试验结果表明:基于改进YOLOv5s的疲劳驾驶检测准确率和召回率分别为95.2%和95.0%,相较于原始YOLOv5s模型,闭眼检测精度提高了3.6%,哈欠检测精度提高了3.8%.
...不再出现此类内容
编辑人员丨2024/3/16
-
基于改进YOLOv5s的大熊猫姿态识别
编辑人员丨2023/10/28
针对大熊猫Ailuropoda melanoleuca姿态识别中,目标存在部分遮挡及背景相似造成识别难度大等问题,本研究对传统YOLOv5s动物姿态识别算法提出3点改进:主干网络引入坐标注意力改进C3模块,使目标定位更加精确;在颈部网络特征融合时,引入BiFPN结构,加强对有效特征的权重比例;在颈部网络特征输出时,采用可变形卷积代替传统卷积,提高对不规则目标的识别.对自制6类姿态数据集进行性能评估后表明,相对传统YOLOv5s模型,改进方法的mAP(0.5)/mAP(0.5∶0.95)达到89.26%/62.09%,提高了3.12%/3.96%,模型参数减少8.6%.本文提出的方法能够提高大熊猫姿态识别精度,为后续行为分析、饲养管理提供技术参考.
...不再出现此类内容
编辑人员丨2023/10/28
-
轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控
编辑人员丨2023/8/5
目的 提出一种融入坐标注意力和高效通道注意力机制的深度学习目标检测模型AM-YOLO.方法 运用Mosaic图像增强与MixUp混类增强对图像进行预处理,采用One-Stage结构的目标检测模型YOLOv5s,并对该模型的骨干网络与颈部网络进行改进.在该模型的骨干网络中把空间金字塔的最大池化层替换成二维最大池化层,接着将坐标注意力机制和高效通道注意力机制分别融入到YOLOv5s模型的C3模块与该模型的骨干网络中.将改进后的模型与未改进的YOLOv5s模型,YOLOv3模型,YOLOv3-SPP模型,YOLOv3-tiny模型进行相关算法指标的对比实验.结果 融入了坐标注意力和高效通道注意力机制的AM-YOLO模型能够有效提升对黑色素瘤的识别率,同时也减少了模型权重的大小.AM-YOLO模型在准确率,召回率以及平均精度均值上都要明显优于其他模型,并且对于早期和晚期黑色素瘤的平均精度均值分别达92.8%和87.1%.结论 本文采用的深度学习目标检测算法模型能够应用于黑色素瘤目标的识别中.
...不再出现此类内容
编辑人员丨2023/8/5
-
改进型YOLOv5s网络在胆囊超声图像检测中的应用
编辑人员丨2023/8/5
目的 解决临床过程中医生利用胆囊超声图像进行结石和息肉鉴别时费时费力的问题.方法 选取超声科采集的200张临床胆囊超声图像作为初始数据集,通过引入BiFPN结构和EIOU损失函数对YOLOv5s模型进行改进.首先对初始数据集进行数据增强,然后将增强后的数据集送入改进后的YOLOv5s模型中进行训练.结果 经过300次迭代,改进后的YOLOv5s模型在测试集的平均精度均值达到了89.79%,与同类型模型相比有明显提升.结论 改进后的YOLOv5s模型有效克服了原模型对中小目标检测精度差的问题,且敏感度明显提升,有助于医生进行胆囊超声图像中结石和息肉的识别定位.
...不再出现此类内容
编辑人员丨2023/8/5
