-
基于肺区CT图像最大密度投影与深度卷积网络的慢阻肺识别模型的构建及意义
编辑人员丨1周前
目的:基于肺区CT图像最大密度投影(MIP)与深度卷积神经网络(CNN)构建慢性阻塞性肺疾病(慢阻肺)识别模型,并探讨其意义。方法:选取2010年1月—2021年5月就诊于大连医科大学附属第二医院的符合入组标准的研究对象共201例,其中慢阻肺组101例,健康对照组100例。研究对象均进行胸部薄层CT图像扫描及肺功能测试。首先,获取所有CT图像序列肺区的MIP图像;其次,以MIP图像为输入,基于改进的残差网络(ResNet)构建慢阻肺识别模型;最后,考察不同层数的ResNet模型对性能的影响。应用准确率、灵敏度、特异度、阳性预测值、阴性预测值、受试者工作特征(ROC)曲线及其下面积(AUC)评估网络的识别效能。结果:ResNet26的慢阻肺识别准确率、灵敏度、特异度、阳性预测值、阴性预测值分别为76.1%、76.2%、76.0%、76.2%、76.0%,AUC为0.855(95% CI:0.799~0.901);ResNet50的慢阻肺识别准确率、灵敏度、特异度、阳性预测值、阴性预测值分别为77.6%、76.2%、79.0%、78.6%、76.7%,AUC为0.854(95% CI:0.797~0.900);ResNet26d的慢阻肺识别准确率、灵敏度、特异度、阳性预测值、阴性预测值分别为82.1%、83.2%、81.0%、81.6%、82.7%,AUC为0.885(95% CI:0.830~0.926)。 结论:本研究成功构建的基于肺区CT图像MIP与深度CNN的慢阻肺识别模型,可实现准确的慢阻肺识别,为慢阻肺早期筛查提供了一种有效工具。
...不再出现此类内容
编辑人员丨1周前
-
人工神经网络在体外受精胚胎评估中的应用
编辑人员丨1周前
人工神经网络(ANN)是一种驱动人工智能(AI)的网络框架,其中采用经典卷积神经网络(CNN)进行胚胎质量评估可进行固定时间节点胚胎细胞计数和图像识别;采用全连接的深度神经网络(DNN),胚胎图像识别准确度提升,适用于较高硬件配置以及需要整合临床信息进行综合预测;残差网络通过增加层数提高准确度并通过跳跃连接解决梯度消失问题,实现动态胚胎评估。贝叶斯网络(BN)机器学习擅长推理,在条件缺失情况下可通过推理弥补数据不足,可结合临床复杂信息进行综合预测评估;支持向量机(MLP)机器学习存在梯度消失与爆炸,容易丢失图像部分空间特征,适用于小样本评估。ANN在预测胚胎植入率、胚胎非整倍体方面具有一定优势,开发新的胚胎质量评估方法减少侵入性检测是人类辅助生殖技术(ART)重要研究方向。
...不再出现此类内容
编辑人员丨1周前
-
人工智能辅助诊断儿童DDH的研究进展
编辑人员丨1周前
儿童发育性髋关节发育不良(developmental dysplasia of the hip,DDH)是导致髋关节骨关节炎和下肢残疾的重要原因,治疗难度和治疗效果与早期准确诊断密切相关。传统的诊断方法对尚未出现股骨头次级骨化中心者首选髋关节超声,对已出现者选择骨盆正位X线片;但两种方法均有赖于临床医生的手动测量与经验判断,耗时费力、可重复性差。人工智能技术与医学影像的有效整合可改善儿童DDH的诊疗现状,提升临床诊治效率。对4~6月龄内婴儿通过局部特征提取的分割算法、基于图像搜索的分割算法及深度学习网络等技术能够快速分析髋关节超声图像、测算DDH指标及辅助诊断DDH;对4~6月龄以上者利用骨边缘检测与模块匹配算法、深度迁移学习算法、同步挖掘局部及全局结构特征的卷积神经网络等技术自动识别骨性解剖关键点、计算髋关节参数及诊断儿童DDH。然而,由于技术所限及研究者认识不足,现有的儿童DDH辅助诊断工具在实际应用中面临着一些问题。通过文献检索从诊断可靠性及合理性等方面探讨儿童DDH人工智能影像学辅助诊断方法的研究进展,并为今后实现真正智能化的自动诊断工具提供研究思路。
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习的视网膜眼底图像的渗出分割方法研究
编辑人员丨1周前
目的:探索基于深度学习方法自动分割彩色眼底图像上糖尿病患者视网膜渗出特征的可行性。方法:应用研究。基于印度糖尿病视网膜病变图像数据集(IDRID)模型的U型网络,将深度残差卷积引入到编码和解码阶段,使其能够有效提取渗出深度特征,解决过拟合和特征干扰问题,同时提升模型的特征表达能力和轻量化性能。此外,通过引入改进的上下文提取模块,使模型能捕捉更广泛的特征信息,增强对视网膜病灶的感知能力,尤其是提升捕捉微小细节和模糊边缘的能力。最后,引入卷积三重注意力机制,使模型能自动学习特征权重,关注重要特征,并从多个尺度提取有益信息。通过查准率、查全率、Dice系数、准确率和灵敏度来评估模型对彩色眼底图像上糖尿病患者自动视网膜渗出特征的检测与分割能力。结果:应用本文研究方法后,改进模型在IDRID数据集上的查准率、查全率、相似系数、准确率、灵敏度、分别达到81.56%、99.54%、69.32%、65.36%、78.33%。与原始模型相比,改进模型的查准率和Dice系数分别提升了2.35%和3.35%。结论:基于U型网络的分割方法能自动检测并分割出糖尿病患者眼底图像的视网膜渗出特征,对于辅助医生更准确地诊断疾病情况具有重要意义。
...不再出现此类内容
编辑人员丨1周前
-
基于卷积神经网络的人工智能烧伤深度识别模型的建立及测试效果
编辑人员丨1周前
目的:建立基于卷积神经网络的人工智能烧伤深度识别模型并测试其效果。方法:在本诊断试验评价研究中,收集中南大学湘雅医院(下称笔者单位)2010年1月—2019年12月收治的符合入选标准的221例烧伤患者伤后48 h内创面照片484张,采用随机数字编号。采用图像查看软件圈出目标创面,由笔者单位烧伤整形科3名具有5年以上专科工作经验的主治医师判断烧伤深度,用不同颜色标记浅Ⅱ度、深Ⅱ度或Ⅲ度烧伤后,按224×224像素的尺寸切割得到完整大小的图像块5 637张。采用图片生成器将3种深度烧伤图像块均扩充至10 000张后,将每种烧伤深度图像块按7.0∶1.5∶1.5比例分为训练集、验证集和测试集。在Keras 2.2.4 Python 2.8.0版本下,采用卷积神经网络中的残差网络ResNet-50构建人工智能烧伤深度识别模型,输入训练集进行训练,利用验证集对模型进行调整、优化。利用测试集测试构建的模型识别各类烧伤深度的准确率,计算精确率、召回率及F1指数;通过降维工具tSNE将测试结果降维可视化生成二维tSNE云图,观察各类烧伤深度分布情况;根据模型对3种烧伤深度识别的敏感度及特异度,绘制出相应受试者工作特征(ROC)曲线,计算ROC曲线下面积。结果:(1)经测试集测试,人工智能烧伤深度识别模型识别浅Ⅱ度、深Ⅱ度、Ⅲ度烧伤的精确率分别为84%(1 095/1 301)、81%(1 215/1 499)、82%(1 395/1 700),召回率分别为73%(1 095/1 500)、81%(1 215/1 500)、93%(1 395/1 500),F1指数分别为0.78、0.81、0.87。(2)tSNE云图显示,人工智能烧伤深度识别模型测试集测试结果中不同烧伤深度之间总体重叠较少,其中浅Ⅱ度与深Ⅱ度、深Ⅱ度与Ⅲ度烧伤之间重叠相对较多,而浅Ⅱ度与Ⅲ度烧伤之间重叠相对较少。(3)人工智能烧伤深度识别模型识别3种烧伤深度的ROC曲线下面积均≥0.94。结论:采用ResNet-50网络建立的人工智能烧伤深度识别模型可较准确地识别烧伤患者早期创面照片中烧伤深度,特别是浅Ⅱ度与Ⅲ度烧伤,有望用于临床烧伤深度辅助诊断,提高诊断准确率。
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习的核素骨显像中骨转移瘤的诊断及评估
编辑人员丨1周前
目的:基于深度学习对 99Tc m-亚甲基二膦酸盐(MDP)全身骨显像图像中骨转移瘤进行智能诊断,并设计肿瘤负荷的定量评估指标。 方法:回顾性纳入同济大学附属第十人民医院核医学科2018年3月至2019年7月间621例患者(男389例、女232例;年龄12~93岁)的骨显像图像,分为骨转移瘤组和非骨转移瘤组。从2组分别抽取80%作为训练集,余20%作为测试集。利用深度残差卷积神经网络ResNet34构建骨转移瘤诊断分类及分割模型。计算灵敏度、特异性、准确性以评估分类模型性能,分析分类模型在<50岁(15例)、≥50且<70岁(75例)及≥70岁(33例)组的性能差异。利用模型分割骨转移瘤区域,以骰子系数评估分割模型结果与人工标注结果的比对。计算骨显像肿瘤负荷系数(BSTBI)以定量评估骨转移瘤肿瘤负荷。结果:骨转移瘤图像280例,非骨转移瘤图像341例;其中,训练集498例,测试集123例。诊断分类模型识别骨转移瘤的灵敏度、特异性及准确性分别为92.59%(50/54)、85.51%(59/69)和88.62%(109/123)。分类模型在<50岁组表现最佳(灵敏度2/2,特异性12/13,准确性14/15),其特异性在≥70岁组中最低(8/12)。分割模型中,骨转移瘤区域骰子系数为0.739,膀胱区域骰子系数为0.925,模型在3个年龄组表现相当。初步结果显示,BSTBI随病灶数目的增多、 99Tc m-MDP摄取程度的增高而增大。构建的骨转移瘤智能诊断模型从输入原始数据到最终完成BSTBI计算所需时间为(0.48±0.07) s。 结论:基于深度学习的骨转移瘤智能诊断模型能较准确地识别骨转移瘤、进行自动区域分割及计算肿瘤负荷,为骨显像图像的解读提供了新方法。研究提出的BSTBI有望成为骨转移瘤肿瘤负荷的定量评估指标。
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习的人工智能模型自动识别颈动脉斑块
编辑人员丨1个月前
该研究旨在构建一个用于颈动脉斑块超声图像的有无判定的数据集,由1165例受检者的1761张超声图像组成.研究采用了一种融合了双线性卷积神经网络与残差神经网络的深度学习架构,即单输入BCNN-ResNet模型,以辅助临床医生通过颈动脉超声图像进行斑块的诊断.该模型经过训练以及内部和外部验证后,在内部验证中,ROC AUC达到了0.99,其95%置信区间为(0.91,0.84),在外部验证中ROC AUC为0.95,其95%置信区间为(0.96,0.94),此表现优于ResNet-34网络模型在内部验证中0.98 AUC的95%置信区间(0.99,0.95)和外部验证中0.94 AUC的95%置信区间(0.95,0.92).因此,单输入BCNN-ResNet网络模型展示了优异的诊断性能,为颈动脉斑块的自动识别提供了一种创新的解决方案.
...不再出现此类内容
编辑人员丨1个月前
-
基于深度学习算法联合Grad-CAM的宫腔镜子宫内膜病变诊断模型研究
编辑人员丨2024/7/13
目的:探讨基于深度学习(DL)算法联合可视化技术梯度加权类激活热图(Grad-CAM)开发的宫腔镜子宫内膜病变诊断模型的有效性.方法:选择2021年6月1日至2022年12月31日在武汉大学人民医院妇科行宫腔镜检查的291例患者的303段宫腔镜视频(4781张图像),采用权重采样的方法,将数据集划分为训练集(3703张)和测试集(1078张).在对训练集用于模型学习与训练后,选择残差神经网络(ResNet18)和高效神经网络(EfficientNet-B0)两种模型架构对测试集分别采用五类和二类分类任务进行模型验证.以病理组织学为金标准,评估其诊断效能,从而选出最优模型,并将Grad-CAM层嵌入最优模型中,输出宫腔镜图像Grad-CAM.结果:①在五类分类任务中,EfficientNet-B0 模型的准确度(93.23%)高于 ResNet18 模型(84.23%);EfficientNet-B0 模型在诊断无不典型性子宫内膜增生、子宫内膜息肉、子宫内膜癌、子宫内膜非典型增生、黏膜下肌瘤5种疾病的曲线下面积(AUC)均稍高于ResNet18模型,两者的AUC几乎都在0.980以上.②在准确度的二类分类任务中和对特异度的评估中,两种模型相似,均在93.00%以上,而EfficientNet-B0模型敏感度(91.14%)明显优于ResNet18模型(77.22%).③EfficientNet-B0模型联合Grad-CAM算法可识别出图像中异常区域,取活检经病理检查证实,模型输出热力图中标记区域约95%为病灶区域.结论:EfficientNet-B0模型联合Grad-CAM研发的宫腔镜诊断模型具有较高的诊断准确度、敏感度和特异度,在诊断子宫内膜病变方面具有应用价值.
...不再出现此类内容
编辑人员丨2024/7/13
-
一种基于双分支注意力神经网络的皮肤癌检测框架
编辑人员丨2024/6/22
皮肤癌是一种主要的癌症,在过去几十年中快速增长,早期发现可以极大提高治愈率.近年来,基于皮肤镜图像利用深度学习模型(尤其是各种卷积神经网络)对皮肤癌进行识别和分类获得了广泛应用.但是与传统的图像识别分类不同,皮肤病检测任务存在数据不平衡、类间差异性小以及皮损面积占比少等方面的挑战.为此,本研究提出一种基于双分支注意力卷积神经网络(DACNN)皮肤癌分类框架.在数据预处理阶段,根据更细粒度的皮肤病类别,对数据集进行分解,降低数据不平衡程度.从网络结构上,上分支网络利用注意力残差学习(ARL)模块有效提取潜在的病变区域特征,接着利用损伤定位网络(LLN)模块定位病变区域.对其裁剪放大输入由ARL构成的下分支网络,进行局部细节的特征提取,然后结合上下分支网络的特征,进行有效的识别.最后,为了进一步缓解数据不平衡问题,在训练阶段中采用加权损失函数.在包含10 015张皮肤镜图像数据集上,对所提出的DACNN模型与几种典型的皮肤病变检测框架进行了实验验证和比较.结果表明,DACNN皮肤癌变检测框架的Sensitivity、Accuracy和F1_score等性能指标分别达到了 0.922、0.942和0.933,与已有的递归注意力卷积神经网络模型RACNN相比,以上3个指标分别提升了 3.48%、2.95%和3.44%.总之,对于各类图像数不平衡,类间图像差异性小以及皮损面积占比少的皮肤镜图像而言,采用适当的类分解,以及双分支注意力神经网络结构首先对潜在的病变区域进行定位放大,然后进行局部细节的特征提取,能够极大的提高皮肤癌的检测准确度.
...不再出现此类内容
编辑人员丨2024/6/22
-
基于有效感受野和注意力融合机制的脑肿瘤全自动分割
编辑人员丨2024/6/15
深度学习在医学图像分割领域取得了显著成果,但其在脑肿瘤分割任务中,仍面临感受野不足、冗余信息过多、信息丢失等问题;为此,本研究提出一种基于编-解码结构的脑肿瘤分割网络模型(EAU-Net).EAU-Net采用有效感受野拓展模块和注意力融合模块改善脑肿瘤分割网络感受野不足与冗余信息过多带来的不利影响;同时,引入基于倒残差结构的瓶颈重采样模块,有效避免上下采样时造成的信息损失,并采用深度卷积降低网络的计算量.在BraTS2020数据集上的实验结果表明,EAU-Net获得最优的分割精度,验证了其在脑肿瘤分割任务中的可行性和有效性.
...不再出现此类内容
编辑人员丨2024/6/15
