-
泥炭地土壤氮排放对气候暖干化响应研究进展
编辑人员丨1个月前
气候暖干化导致高寒地区泥炭地土壤氮排放急剧增加,但是潜在的微生物调节机制尚不清楚.本文综述了高寒泥炭地土壤氮转化与排放过程对温度升高、水位变化的响应,土壤厌氧氨氧化(Anammox)与NO3-异化还原过程的相互作用,土壤N2O产生路径及其贡献.当前研究的不足体现在:1)只关注土壤N2O排放,忽视了 N2的释放,导致高寒地区泥炭地氮的损失量被严重低估;2)Anammox过程对泥炭地N2排放的贡献未被量化;3)Anammox、细菌反硝化和真菌协同反硝化过程对N2损失的相对贡献缺乏定量评估;4)气候暖干化情景下Anammox和NO3-还原过程的解耦机制尚不清楚.未来研究重点应着力于:构建野外增温、水位控制暖干化模拟试验平台,结合稳定性同位素、分子生物学和宏基因组学技术,围绕格局-过程-机理这条主线,系统评估高寒地区泥炭湿地氮排放(N2O、NO、N2)的量级、组成比例与主控因素,探讨土壤主要脱氮过程的相互作用规律,量化硝化、厌氧氨氧化和反硝化对N2O、N2产生的相对贡献,甄别对暖干化响应敏感的微生物类群,明晰土壤脱氮转变与微生物群落演替之间的耦联关系,揭示土壤脱氮过程对气候暖干化响应的微生物学机理.
...不再出现此类内容
编辑人员丨1个月前
-
进水碳氮比对CANON型人工湿地脱氮性能的影响
编辑人员丨2023/8/6
通过逐步提高进水中的有机碳源浓度,探讨进水碳氮比(C/N)对基于亚硝化的全程自养脱氮(CANON)型潮汐流人工湿地(TFCW)脱氮效能及其微生物特性的影响.结果表明:进水C/N可显著影响CANON型TFCW中脱氮功能微生物的数量与活性,进而影响其氮素转化速率.当进水C/N由0.0增至6.0时,TFCW中反硝化功能基因的丰度随之增加,系统反硝化性能提高,TFCW中逐渐形成同步亚硝化、厌氧氨氧化与反硝化(SNAD)耦合反应体系,其脱氮效果得以强化.当进水C/N>6.0时,好氧氨氧化菌活性受到抑制,数量逐渐减少,TFCW中的厌氧氨氧化作用与反硝化作用受阻,系统脱氮性能恶化.当进水C/N为6.0时,TFCW中的SNAD作用可得到最大限度的强化,其总氮(TN)去除率和去除负荷分别达(93.3±2.3)%和(149.30±8.00) mg·L-1·d-1,高于CANON系统中TN去除率的理论值.
...不再出现此类内容
编辑人员丨2023/8/6
-
宏基因组技术在氮循环功能微生物分子检测研究中的应用
编辑人员丨2023/8/6
氮循环是最重要的生物地球化学循环之一,而微生物是驱动自然环境中氮循环最重要的动力.应用宏基因组技术来研究自然环境中直接参与氮循环的功能微生物类群的总量和多样性是近年来环境微生物的研究热点之一.本文总结最新氮循环功能微生物类群的研究发现,聚焦各转化过程中(包括固氮、硝化、反硝化、厌氧氨氧化、氮同化/异化还原、氨化和同化作用等)分子标记基因的选择,重点介绍通过这些标记基因的分子检测方法在自然环境中检测到的微生物功能类群的分布状况,最后指出分子检测技术的革新和完善的数据分析平台的建立对未来氮循环功能微生物研究的重要意义.
...不再出现此类内容
编辑人员丨2023/8/6
-
过量施肥对设施菜田土壤菌群结构及N2O产生的影响
编辑人员丨2023/8/6
[背景]N2O是一种很强的温室气体,其温室效应强度大约是CO2的265倍.土壤氮肥施加量是影响N2O排放的重要因素,而厌氧条件下微生物反硝化则是N2O产生的重要途径.[目的]研究过量施肥条件下蔬菜大棚土壤菌群结构变化及其对N2O气体排放的影响.[方法]利用自动化培养与实时气体检测系统(Robot)监测土壤厌氧培养过程中N2O和N2排放通量,比较过量施肥和减氮施肥模式下土壤N2O排放模式的差异.通过Illumina二代测序平台对这2种不同施肥处理的土壤微生物群落进行高通量测序,研究不同施肥量对土壤菌群组成的影响.[结果]过量施肥土壤中硝酸盐的含量大约是减氮施肥土壤的2倍,通过添加硝酸盐使2种土壤的硝酸盐含量均为60 mg/kg或为200 mg/kg时,过量施肥土壤在厌氧培养前期N2O气体的产生量及产生速度都明显高于减氮施肥土壤.另外,过量施肥导致土壤菌群结构发生显著改变,并且降低了土壤微生物的多样性.相对于减氮施肥,过量施肥方式富集了Rhodanobacter属的微生物.PICRUSt预测结果显示,传统施肥没有显著改变反硝化功能基因相对丰度.[结论]长期过量氮肥施用显著增加了土壤N2O的排放,可能原因是施肥改变了包括氮转化相关微生物在内的土壤菌群组成,从而影响了土壤N2O气体的形成与还原过程.
...不再出现此类内容
编辑人员丨2023/8/6
-
利用硝酸盐和亚硝酸盐同步富集厌氧甲烷氧化微生物的比较实验
编辑人员丨2023/8/6
[背景]反硝化厌氧甲烷氧化(Denitrifying anaerobic methane oxidation, DAMO)是以硝酸盐或亚硝酸盐为电子受体以甲烷为电子供体的厌氧氧化过程,对认识全球碳氮循环、削减温室气体排放和开发废水脱氮新技术等方面具有重要意义.[目的]认识以硝酸盐和亚硝酸盐为电子受体的DAMO微生物富集过程和结果的差异性.[方法]在序批式反应器(Sequencing batch reaetor,SBR)内接种混合物,分别以硝酸盐和亚硝酸盐为电子受体连续培养800 d,定期检测反应器基质浓度变化、计算转化速率;利用16SrRNA基因系统发育分析研究功能微生物的多样性,利用实时荧光定量PCR技术定量测定功能微生物.[结果]以亚硝酸盐为电子受体的1、3号反应器富集到了DAMO细菌,未检测到DAMO古菌;以硝酸盐为电子受体的2号反应器富集到了DAMO细菌和古菌的混合物;3个反应器的脱氮速率经过初始低速期、快速提升期,最终达到稳定,但2号快速提升期开始时间比1、3号晚了80d左右,达到稳定的时间更长,稳定最大速率为1、3号的44.7%、40.3%.[结论]硝酸盐和亚硝酸盐对富集产物有决定性影响;以硝酸盐为电子受体富集得到的DAMO古菌和细菌协同体系可以长期稳定共存,DAMO古菌可能是协同体系中脱氮速率的限制性因素.
...不再出现此类内容
编辑人员丨2023/8/6
-
厌氧氨氧化颗粒污泥研究进展
编辑人员丨2023/8/6
厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)工艺是一种新的生物脱氮技术.一经问世即得到人们青睐,现已成为废水脱氮的升级技术.厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AnAOB)是Anammox工艺的功能之源.以颗粒污泥形态存在的AnAOB是Anammox颗粒污泥床脱氮系统的重要支柱.由于AnAOB生长缓慢且对环境条件变化敏感,Anammox脱氮系统不仅启动缓慢,而且运行极易失稳甚至崩溃.值得庆幸的是,AnAOB可自主选择、组合和固定功能菌群落而形成Anammox颗粒污泥,并通过其优良的重力沉降性能和高效的基质转化性能保障Anammox脱氮系统的持续工作.本文综述了AnAOB的种类和特性及Anammox颗粒污泥的组成、结构和功能,以期为Anammox工艺的优化和拓展提供参考.
...不再出现此类内容
编辑人员丨2023/8/6
-
浅表层水稻土N2O消耗能力及其与N2O还原微生物的耦合关系
编辑人员丨2023/8/6
土壤不仅能够产生、排放温室气体N2O,还具有截留、吸收、转化N2O的能力.土壤消耗N2O已经成为很重要的一种降低大气N2O浓度的途径,但目前关于土壤N2O消耗过程及其微生物调控机制的系统研究较为缺乏.试验以浅表层水稻土柱(0-5cm)为研究对象,通过外源添加N2O气体研究N2O迁移通过淹水土柱的动态过程,以及N2O消耗能力与氧化亚氮还原酶基因丰度变化和其他土壤养分含量变化的联系,揭示浅表层水稻土N2O消纳量与N2O还原微生物之间的耦合关系.结果 显示,淹水厌氧条件下5 cm土壤深度外源添加的N2O迁移通过浅表层土柱后,仅有7.17-9.80%部分逸散出土表,表明0-5 cm淹水水稻土层具有极强的N2O截留能力(90%以上)而减少N2O净排放量.排放出土表的N2O也可被淹水土柱继续吸收消耗,且吸收转化速率随N2O浓度增加而大幅提高,最高可达到3896.75 μg N m-2 h-1.与此同时,土壤DOC含量大量消耗,含nosZⅠ基因的反硝化微生物数量显著增长(P<0.01),而nosZⅡ基因丰度的无显著变化.说明高浓度N2O添加能够促进淹水土壤N2O吸收消耗能力,此刺激作用可能主要由含nosZI基因的N2O还原微生物进行调控.浅表层土壤强大的N2O吸收消耗功能可进一步深入系统研究,为实践温室气体减排提供理论基础.
...不再出现此类内容
编辑人员丨2023/8/6
-
海洋氮循环过程及基于基因组代谢网络模型的预测
编辑人员丨2023/8/5
海洋氮循环在地球元素循环中充当着必不可少的角色.海洋氮循环是由一系列氧化还原反应构成的生物化学过程.固氮作用和氮同化作用为生态系统提供了生物可用氮(铵盐).硝化作用可进一步将铵盐氧化为硝酸盐,硝酸盐又可以通过反硝化作用转化为氮气.整个氮循环实现了海洋中不同含氮无机盐间的转换.微生物是海洋氮循环的重要驱动者,海洋氮循环的研究可以帮助理解海洋生物与地球环境相互作用及协同演化的机制,从而更好地保护地球生态环境.随着氮循环关键微生物基因组尺度代谢网络模型的发表,研究者可以利用代谢网络模型来研究不同氮循环过程的效率、环境因子对氮循环过程的影响以及解析氮循环及生物网络的内在机理等,从而帮助人们更深入地研究海洋氮转化机制.本文主要综述了海洋氮循环过程中各个转化过程的主要微生物,以及基因组尺度代谢网络模型在分析氮循环中的应用.
...不再出现此类内容
编辑人员丨2023/8/5
-
湿地反硝化型甲烷厌氧氧化研究进展
编辑人员丨2023/8/5
甲烷是最重要的温室气体之一,其单分子温室效应是CO2的298倍.湿地是甲烷重要的排放源,也是氮素的源和汇.微生物参与湿地碳、氮转化的生物地球化学循环过程,湿地CH4是土壤淹水条件下微生物厌氧降解有机质而产生,微生物又可以通过反硝化型甲烷厌氧氧化过程(DAMO)降低湿地甲烷的排放,对缓解全球温室效应具有重要作用.本文系统介绍了DAMO过程机理、功能微生物Methylomirabilis oxyfera菌群特性、分布以及土壤DAMO过程的检测方法和DAMO过程的影响因素,并对未来更多的湿地DAMO微生物的发现,尤其是对稻田湿地DAMO过程的相关研究提出展望,以期推动该领域更深入的研究,为稻田湿地甲烷排放量的估算及制定合理的减排措施提供科学依据.
...不再出现此类内容
编辑人员丨2023/8/5
-
陆地和淡水生态系统新型微生物氮循环研究进展
编辑人员丨2023/8/5
氮生物地球化学循环是地球物质循环的重要枢纽,是决定陆地生态系统生产力水平、水资源安全、温室气体生成排放的关键过程.氮循环是由微生物介导的一系列复杂过程,不同形态、价态氮化合物的转化分别由相应的功能微生物驱动完成.随着厌氧氨氧化、完全氨氧化等新型氮转化过程的相继报道和发现更新了人们对氮循环的认识.本文综述了陆地和淡水生态系统中厌氧氨氧化(anammox)、硝酸盐异化还原为铵(DNRA)、完全氨氧化(comammox)等新型氮循环过程的发生机制、热区分布及环境效应,并总结了这三种氮循环的相互关系.
...不再出现此类内容
编辑人员丨2023/8/5
