-
基于特征融合AEBGNet的运动想象脑电分类算法
编辑人员丨5天前
针对机器学习方法在对脑电特征进行分类时无法同时兼顾脑电信号的时-空域特征的问题,利用添加注意力机制的卷积神经网络提取空间特征和双向门控循环单元提取时间特征,提出一种基于特征融合的运动想象(Motor Imagery,MI)脑电分类算法(Attention-EEGNet-BiGRU,AEBGNet),AEBGNet可将时、空域两类特征相融合,得到更具表征性的时-空域特征,最终构建的AEBGNet分类模型在BCI competition IV 2b数据集上取得80.37%的平均正确率,比标准的EEGNet方法提高6.09%.结果表明,本文方法可以有效提高MI脑电信号的分类正确率,为MI脑电信号的分类提供新的思路.
...不再出现此类内容
编辑人员丨5天前
-
基于深度学习模型的我国药品不良反应报告实体关系抽取研究
编辑人员丨2023/8/6
药品不良反应(adverse drug reaction,ADR)报告作为药品上市后安全评价的主要载体,对药物安全评价研究具有重要的参考价值.本文以深度学习模型中的双向门控循环单元(bidirectional gated recurrent unit,Bi-GRU)结构为基础,引入注意力机制以及字向量与分词向量优化模型,对我国ADR报告中的ADR过程描述部分进行"药品-不良反应"的关系抽取研究.实验结果表明,基于深度学习的实体关系抽取模型在确认不良反应描述中"药品-不良反应"对之间的关系(否认、可能、直接和后处理)的分类任务中达到了很好的性能,最终模型取得87.52%的F值.所提取的信息在辅助ADR报告评价的同时,可进一步运用于特定药物的不良反应统计学研究以及知识库构建等任务中,从而为药物安全性评价研究提供更多的研究手段.
...不再出现此类内容
编辑人员丨2023/8/6
-
基于深浅特征融合的深度卷积残差网络的脑电情绪识别模型
编辑人员丨2023/8/5
基于脑电信号的智能情绪识别系统具有便携性、高时间分辨率、实时性等特点,能够在健康、娱乐、教育等多个领域实现情绪监控与调节的应用.但由于脑电信号的非平稳性和个体差异性,传统分类器难以深入提取脑电信号中潜在的与情绪语义相关的特征.为了有效地提取脑电特征,提高脑电-情绪识别的准确性,提出一种新型的基于深浅特征融合的深度卷积残差网络情绪识别模型,主要包括浅层-深层特征提取两个模块和分类模块.首先,通过设计多层不同卷积核的卷积层,以实现浅层时-空特征提取;其次,将所提取的浅层时-空特征输入到双向GRU网络和注意力机制网络,进一步提取得到浅层-深层融合特征;最后,将浅层-深层融合特征输入到全连接层进行分类.使用DEAP数据集中76800个脑电样本进行基于被试独立的留一交叉验证,在效价和唤醒度的维度上,跨个体、跨试次、跨时间的二分类准确率分别为96.95%和97.22%,比现有同类模型的最优识别性能分别提升3.53%和4.25%.另外,模型的性能也在MAHNOB-HCI和SEED数据集上得到验证.结果 表明,提出的模型能有效地提取与情绪语义相关的脑电特征.
...不再出现此类内容
编辑人员丨2023/8/5
-
基于注意力机制的卷积时序神经网络检测阵发性房颤模型
编辑人员丨2023/8/5
目的 为从动态心电图中准确、有效、快速地检测阵发性房颤(Paroxysmal Atrial Fibrillation,PAF),降低患者的发病率和死亡率,设计一种基于注意力机制的卷积时序神经网络检测阵发性房颤的混合模型.方法 该算法首先通过卷积神经网络提取心电信号特征,然后由注意力机制帮助网络聚焦于重点信息部分,最后输入双向门控循环单元用于上下文信息的联系,从而准确检测PAF.结果 该模型使用Physionet 2021数据库作为预训练,在CPSC2021数据库上进行迁移学习,其灵敏度、特异性、准确度分别为96.86%、98.56%、98.54%.结论 相较于其他算法,该算法能够有效检测PAF,具有潜在的临床应用价值.
...不再出现此类内容
编辑人员丨2023/8/5
