-
基于半监督网络的前交叉韧带损伤膝关节磁共振诊断辅助研究
编辑人员丨5天前
目的 本研究基于半监督算法残差网络(semi-supervised algorithm Residual network,SMRNet)的深度学习方法,探索其在计算机辅助自主分析膝关节MRI诊断前交叉韧带(anterior cruciate ligament,ACL)损伤方面的应用.方法 使用100名经过关节镜确认的ACL损伤患者和100名关节镜确认无ACL损伤的患者的术前MRI图像.在选取适当层面后,裁剪并用于SMRNet的训练.SMRNet对单个MRI切片上ACL损伤的概率进行最终判断.4名临床医师对相同图像进行读片诊断.结果 SMRNet分类的敏感性、特异性、准确性、阳性预测值和阴性预测值分别为97.00%、94.00%、95.50%、94.17%和96.91%.医师的整体阅片情况类似,敏感性区间91.00%~96.00%、特异性区间90.00%~94.00%、准确性区间90.50%~95.00%、阳性预测值区间90.09%~94.12%、阴性预测值区间90.90%~95.92%,二者差异无统计学意义(P>0.05).结论 经过训练的SMRNet模型在ACL损伤检测上超越部分临床医师,为膝关节MRI诊断提供高效可靠方法,展现深度学习在医学影像的潜力.未来,SMRNet有望成为膝关节MRI诊断的重要工具,为患者提供更精准的诊疗方案.
...不再出现此类内容
编辑人员丨5天前
-
口腔鳞状细胞癌免疫相关预后风险模型的构建与验证
编辑人员丨5天前
目的:分析口腔鳞癌(oral squamous cell carcinoma,OSCC)中差异表达的免疫相关核心基因,构建OSCC患者的免疫相关预后风险模型.方法:对癌症基因组图谱(the cancer genome atlas,TCGA)数据库内的OSCC患者RNA测序数据进行加权基因共表达网络分析,识别免疫相关模块和关键基因.采用单因素Cox回归分析和生存分析,筛选与免疫预后相关的核心基因,构建OSCC的免疫相关预后风险模型;进一步采用Kaplan-Meier分析、受试者工作特征曲线和来自外部GSE41613数据集评估该预后风险模型的预测能力.应用实时荧光定量PCR(RT-qPCR)检测OSCC患者肿瘤组织样本中8个免疫预后核心基因的表达,计算风险评分,评估该评分与肿瘤浸润深度间的相关性.采用SPSS 21.0软件包对数据进行统计学分析.结果:成功构建基于8个免疫预后核心基因(CSF2RA、CLEC4C、COL5A3、CTSG、EDNRA、GPC4、GUCY1A2和ANGPT2)的口腔鳞癌预后风险模型.Kaplan-Meier分析、受试者工作特征曲线和外部GSE41613数据集验证显示,该模型具有良好的预后预测效能.基于该模型计算的OSCC患者的风险评分与肿瘤浸润深度呈正相关,表明该模型同时具有预测OSCC潜在风险的能力.结论:基于8个免疫预后核心基因构建的预后风险模型具有预测OSCC患者预后的能力,有望成为口腔鳞癌免疫防治的重要参考.
...不再出现此类内容
编辑人员丨5天前
-
医学图像分割的研究进展
编辑人员丨5天前
医学图像是医生对患者进行病情诊断和治疗规划的有力工具.现今对于医学图像的分割不再局限于手工分割方法,通过传统方法与深度学习方法来实现医学图像分割已经取得更好、更准确的结果.本文基于近年来一些较为出众的医学图像创新分割方法进行综述,通过阐述深度学习方法如SAM、SegNet、Mask R-CNN和U-NET以及传统方法如活动轮廓模型、阈值分割模型创新等,对比各种图像分割方法的异同点,对医学图像分割方法做出总结与展望.以此来帮助学者们更好地了解目前的研究进展与未来的发展趋势.
...不再出现此类内容
编辑人员丨5天前
-
前列腺癌患者神经微环境潜在磁共振成像影像标志物的研究现状
编辑人员丨5天前
前列腺癌(prostate cancer,PCa)是全球男性中患病最多、致死率第二高的癌症.PCa神经微环境与肿瘤进展、手术根治程度及术后复发密切相关,但具体机制尚不明确.神经微环境中的神经密度(neural density,ND)、神经周围侵袭(perineural invasion,PNI)以及神经内分泌特征(neuroendocrine features,NEF)与TMPRSS2 ERG基因、单胺氧化酶A(monoamine oxidase A,MAOA)、核因子κB,神经营养因子以及神经肽Y(neuropeptide Y,NPY)等的表达密切相关.挖掘与该基因组学及蛋白组学相关的影像标志物可以早期识别PCa神经微环境从而影响临床诊疗方案.基于多参数磁共振成像(multiparameter magnetic resonance imaging,mp-MRI)影像组学特征可以识别PNI及NEF的潜在影像标志物.基于磁粒子成像技术(magnetic particle imaging,MPI)、深度神经网络(deep neural network,DNN)图像分类模型可以进行神经可视化.新兴神经影像技术弥散张量成像(diffusion tensor imaging,DTI)、扩散频谱成像(diffusion spectrum imaging,DSI)、神经突定向扩散与密度成像(neurite orientation dispersion and density imaging,NODDI)以及基于吩噁嗪的近红外荧光团的设计合成与神经成像技术,在显示及预测ND、PNI、NEF也蕴含着独特的价值.本文就PCa患者神经微环境潜在影像标志物的研究现状进行综述,以进一步揭示PCa神经微环境的神经生理机制,为后续诊疗过程及改善患者预后提供影像学依据.
...不再出现此类内容
编辑人员丨5天前
-
深度学习在新型冠状病毒肺炎的智能诊断应用的研究进展
编辑人员丨5天前
新型冠状病毒肺炎(corona virus disease 2019,COVID-19)具有高传染性,严重威胁人民群众的生命安全,快速筛查可以实现快速治疗、防止肺炎进展.目前COVID-19检测诊断方法的金标准为逆转录聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR),但是由于核酸检测存在耗时且假阴性率偏高的问题,而影像医生对医学图像的诊断存在主观性且工作量巨大,因此借助人工智能(artificial intelligence,AI)技术对实现COVID-19的快速诊断至关重要.随着AI在医学领域的成功应用,深度学习技术成为辅助诊断新型冠状病毒肺炎的有效方法.近年来许多学者使用深度学习技术来构建对医学图像进行智能诊断的模型,本文的主要内容就是对这类模型进行总结和分析,介绍了分割肺部区域的模型、实现二分类或多分类的分类模型以及模型在临床上的应用.与此同时,在文章中分析了COVID-19患者的影像学特点,COVID-19患者多双肺受累,其中磨玻璃影是最常见的影像征象.对COVID-19研究的最新进展也进行了介绍,主要是关于提高AI模型准确性的开发和"长新冠"综合征的相关研究.因此,在新型冠状病毒肺炎常态化管理下,模型准确性的提高可以借助数据集的扩大或模型结构轻量化等方面实现;"长新冠"综合征作为一个新的研究领域,学者可以在临床症状、预后随访和结合深度学习技术等方面进行进一步的研究.
...不再出现此类内容
编辑人员丨5天前
-
基于ConvNeXt模型的胸部X线图像的疾病分类与可视化
编辑人员丨5天前
目的 胸部X线是临床实践中常见的胸部疾病筛查和诊断方式.由于放射科医生长时间阅片容易视觉疲劳以及医疗资源分配不均衡的问题,导致误诊和漏诊的情况时有发生.针对这一问题,本研究运用深度学习技术,提出了一个基于ConvNeXt模型的胸部X线图像的疾病检测方法,旨在提高胸部疾病诊断准确度、减轻误诊风险并提高医生工作效率.方法 利用大规模公开胸部X线图像数据集ChestX-ray14训练ConvNeXt模型,该模型在ResNet模型的基础上,融合了视觉Transformer结构的优势,可以有效提高模型的特征提取和识别能力,同时以AUC(ROC曲线下方的面积)作为模型性能的评价指标,与已有的分类模型CheXNet、ResNet及Swin Transformer进行了对比.此外,通过引入Grad-CAM可视化方法,利用卷积神经网络特征图的梯度信息生成胸部X线图像的类激活热力图,实现对病灶区域的定位,从而提高医生的诊断效率.结果 基于ConvNeXt模型的诊断方法在识别14种胸部疾病时平均AUC值可达0.842,特别在识别积液(AUC值为0.883)、水肿(AUC值为0.902)和疝气(AUC值为0.942)等疾病时表现较为令人满意.结论 本文提出的方法在胸部X线图像的疾病检测中具有较好的性能,是一种对胸部X线图像进行胸部疾病诊断进而协助医生提高工作效率的有益尝试.
...不再出现此类内容
编辑人员丨5天前
-
CAMU-Net:基于Attention U-Net的视网膜血管分割改进模型
编辑人员丨5天前
提出一种改进的U-Net模型(CAMU-Net),以达到精准分割视网膜血管的目的.CAMU-Net模型通过添加残差增强模块来提取区域特征中的重要信息,增强模型对区域特征的了解;通过添加特征细化模块来促进特征的提取,提高新模型的全局特征收集能力;通过添加通道注意力机制模块来捕捉图像特征,精确分割结果;通过引入多尺度特征融合结构来提升模型感知目标边界等细节的能力.在DRIVE数据集上进行消融实验,得出各模块的实际效果,验证各模块对于本模型视网膜血管分割各方面提升的作用;在DRIVE和STARE数据集上和其他主流网络模型进行对比分析,结果表明CAMU-Net模型优于其他模型.
...不再出现此类内容
编辑人员丨5天前
-
基于生成对抗网络的放疗剂量分布研究
编辑人员丨5天前
目的:探讨利用深度学习在图像处理上的优势与放疗结合是否会使放疗过程更加智能化。方法:生成对抗网络(GAN)是一种利用神经网络的生成模型,输入相关特征可生成高质量剂量分布图像。先使用随机无条件GAN进行模拟分布数据的验证,再使用条件GAN(cGAN)训练肿瘤病例的DICOMRT数据,利用靶区和器官轮廓信息直接生成剂量分布图。结果:对于理想数据验证,GAN生成模拟分布效果优良,通过提取靶区轮廓和真实剂量切片数据使用cGAN训练,得到病例计划靶体积和危及器官的剂量分布。结构中预测值与真实剂量之间最大值和平均值的绝对误差评价表现为[3.57%,3.37%](计划靶体积)、[2.63%,2.87%](脑)、[1.50%,2.70%](临床靶体积)、[3.87%,1.79%](大体肿瘤体积)、[3.60%,3.23%](危及器官-1)、[4.40%,3.13%](危及器官-2)。结论:利用GAN模型可以生成模拟分布数据,同时结合先验知识的cGAN模型可以建立靶区和器官信息与剂量分布之间的关系。通过输入靶区和器官轮廓信息直接快速生成对应的剂量分布,是剂量预测的一种有效尝试。
...不再出现此类内容
编辑人员丨5天前
-
骨质疏松性椎体压缩骨折MRI精准辅助诊断模型的研究
编辑人员丨5天前
目的:拟开发一种基于MRI深度学习的自动精准检测骨质疏松性椎体压缩骨折(OVCF)的诊断模型。方法:回顾性收集2019年1月至2021年10月广州市第一人民医院诊断为OVCF的500例患者资料。男396例,女204例;年龄(74.5±6.0)岁;骨密度T值为-2.9±0.8;骨折节段:L 1 128例,L 2 113例,L 3 109例,L 4 115例,L 5 108例。选择多模态分层融合网络进行训练、测试及验证,应用grad-cam可视化方法,构建基于脊柱MRI图像的深度学习模型。随机抽取30例诊断为OVCF患者的MRI图像,比较深度学习的精准辅助诊断模型与高年资脊柱外科医师对OVCF的诊断价值。 结果:建立的基于MRI图像深度学习的精准辅助诊断模型对OVCF的诊断准确度为96.7%,灵敏度为93.5%,特异度为88.9%,阳性预测值为100.0%,阴性预测值为76.9%,均高于2名高年资脊柱科医师(70.0%、72.7%、28.6%、82.1%、28.6%),差异均有统计学意义( P<0.05)。 结论:本研究成功建立了的基于MRI图像的深度学习的OVCF精准辅助诊断模型,其诊断效能高于脊柱外科医师。
...不再出现此类内容
编辑人员丨5天前
-
用于BI-RADS 4类肿块动态超声诊断的人工智能新模型
编辑人员丨5天前
目的:探究一种融合了SAM-YOLOV 5深度学习网络和图像处理技术的人工智能(AI)新模型在乳腺影像报告与数据系统(BI-RADS)4类肿块超声动态视频良恶性分类中的应用。方法:回顾性收集2019年5月至2023年6月汕头大学医学院第一附属医院经病理证实的BI-RADS 4类的乳腺肿块患者458例(530个肿块),按7∶3的比例进行模型的训练和测试,分析模型的ROC曲线下面积(AUC)、敏感性、特异性、阳性预测值、阴性预测值。先与单张静态图像下的测试效果进行比较,再与3个传统的深度学习网络以及高、低年资医师组的测试效果进行比较。分析新模型在BI-RADS 4a、4b、4c类肿块中的诊断效能。结果:二维超声动态视频在新模型中测试所得到的AUC、敏感性、特异性、阳性预测值、阴性预测值高于使用单张超声静态图像(均 P<0.05)。基于二维超声动态视频下,新模型的AUC、敏感性、特异性、阳性预测值、阴性预测值高于3个深度学习网络模型(YOLOV 5、VGG 16、Resnet 50)和低年资医师组(均 P<0.05),低于高年资医师组(其中仅特异性、阴性预测值 P<0.05)。新模型对BI-RADS 4b类肿块诊断效能最低。 结论:基于SAM-YOLOV 5深度学习网络和图像处理技术开发的用于BI-RADS 4类乳腺肿块动态超声分类诊断的新模型有较高的诊断价值,有望用于辅助临床诊断。
...不再出现此类内容
编辑人员丨5天前
