-
甘南高寒草甸碳收支时空格局及动态模拟
编辑人员丨2024/8/10
草甸生态系统具有强大的碳汇功能,在全球碳循环过程中发挥着重要作用.区域尺度草甸生态系统碳通量的精准模拟,可以为揭示草地碳循环对全球变化的反馈机制提供理论依据.生态过程模型则是分析和预测区域碳平衡的重要途径.以甘南州高寒草甸生态系统为研究对象,利用参数优化后的Biome-BGC模型,模拟1979-2018年高寒草甸总初级生产力(Gross Primary Productivity,GPP)和净生态系统生产力(Net Ecosystem Productivity,NEP),以表征该区域碳收支的时空分布特征.以上述40年实测气象数据为基准,并结合第六次国际耦合模式比较计划(Coupled Model Intercomparison Project phase 6,CMIP6)中的3种共享社会经济路径(Shared Socio-economic Pathways,SSPs)情景,对甘南州2019-2100年高寒草甸碳收支进行情景模拟.结果表明:(1)参数优化后的Biome-BGC模型能较好的模拟甘南州高寒草甸GPP和NEP,且GPP模拟对比NEP的模拟效果更好;(2)甘南州高寒草甸在整个研究阶段表现为碳汇,过去40年GPP、NEP波动范围为600-1100 g C m-2 a-1、150-300 g C m-2 a-1,GPP显著上升,NEP呈波动性上升趋势.未来暖湿化情景下,高寒草甸碳收支年际波动较大,NEP呈先上升再下降趋势,2060年前后出现极小值,年均增幅约为2.02 g C m-2 a-1,气温、降水和大气CO2浓度升高共同影响该地碳收支格局;(3)季节尺度上表现为冬春季节为碳源、夏秋季节为碳汇,植被生长季固碳作用增强.年内GPP、NEP呈倒"U"型变化趋势,峰值均出现在7、8月,低温以及持续增温对碳汇具有抑制作用,生长季降水量与植被生产力呈正相关;(4)碳汇/碳源的空间分布随时间而变化,具有明显的地域差异性,总体上碳汇增长率由西南向东北递减.
...不再出现此类内容
编辑人员丨2024/8/10
-
人工灌丛总初级生产力和蒸散对气候变化的响应模拟
编辑人员丨2024/6/1
荒漠草原区人工灌丛生态系统的总初级生产力(GPP)和蒸散(ET)如何响应全球气候变化,不仅是全球变化生态学研究的核心问题,也关乎干旱半干旱风沙区生态建设的可持续性.利用参数优化后的生物群区生物地球化学循环(Biome-BGC)模型和气象环境驱动数据,考虑不同气候变化情景和未来趋势,模拟了盐池荒漠草原区人工灌丛生态系统GPP和ET对气候变化的响应.结果表明:(1)增温会显著抑制生态系统的GPP,大幅度的增温(3℃)会导致GPP急剧下降,但增温对ET的抑制作用非常微弱;(2)降水是限制ET变化的重要因素,相对于增温诱发干旱胁迫所引起的ET小幅下降,降水多寡则更直接地控制着生态系统的ET大小;(3)中国西北地区未来气候的"暖湿化"趋势和大气CO2浓度升高会对荒漠草原区人工灌丛生态系统产生综合驱动效应,增强陆地和大气间的碳水交换通量.研究成果可为干旱半干旱区应对全球变化及指导地方政府制定生态保护修复政策提供科学依据.
...不再出现此类内容
编辑人员丨2024/6/1
-
森林土壤甲烷吸收对全球变化的响应
编辑人员丨2024/3/23
森林土壤是最有效的大气甲烷(CH4)的陆地生物汇,大气CO2浓度升高、增温、降雨格局改变和氮沉降增加等全球变化通过影响土壤理化性质、植物生长和土壤微生物等,进而影响土壤CH4的吸收.本研究通过Meta分析综述了全球变化因子对森林土壤吸收CH4的潜在影响.基于全球不同区域的155篇公开发表文章的195组数据发现:在CO2浓度升高和N沉降增加情况下,森林生态系统吸收CH4的速率显著降低;在干旱条件下,土壤CH4吸收率显著增加.本文没有发现热带、温带和北方森林在年尺度上的CH4吸收率明显不同.在森林土壤中,温度升高对CH4吸收速率的正向作用不明显,相应的自然对数响应比表明,全球气候变暖不会直接对森林CH4吸收率产生显著影响.本研究收集的森林土壤CH4吸收季节性和干旱实验的结果证明了土壤水分对CH4吸收具有显著负相关作用,但本文拟合的土壤水平衡的CH4吸收线性模型并没有体现出土壤水分盈余对土壤CH4吸收的负相关性.该结果表明,土壤水平衡模型在应用到全球尺度上时,需要收集更多的实验数据.同时,本研究结果对未来开展全球变化对森林土壤CH4吸收影响的相关实验有一定参考意义.
...不再出现此类内容
编辑人员丨2024/3/23
-
增温对林木细根物候影响的研究进展
编辑人员丨2024/3/23
林木细根物候是观测全球变暖影响的重要指标.全球变化背景下,细根物候不仅反映林木的生长状况变化,也揭示着陆地生态系统碳循环和地下碳分配动态.林木细根物候对气候变化的响应是全球变化研究的热点和难点,国内外已开展了大量研究工作,目前部分研究认为土壤增温将延长林木细根的物候期,并且北半球一些地区春季物候期、生长高峰期均提前,而大气增温有可能抑制细根生长,推迟其物候期,此外还有研究发现表层土壤中的根系物候受增温的影响可能比深层根系更大.同时,一些学者将细根物候与根际土壤环境、微生物和地上物候几个方面相联系以研究其响应机制,但细根物候如何响应气候变暖以及这些响应可能的机制仍未有定论.为此,该文系统阐述了全球变暖背景下林木细根物候的研究进展,以期为地下物候学研究以及林木对全球变化的响应和适应机制研究提供参考,并认为今后还需加强以下几个方面的研究:1)改进和探索更精确的模拟增温方式并开展更长时间尺度的量化研究;2)探究变化环境下林木根系不同功能模块(如吸收根/运输根,纤维根/先锋根)与其物候的联系,即将"环境-性状-物候"相关联;3)综合考虑根系物候的控制因素在不同地下物候相(根系生长开始、生长峰值、生长停止)、物种、土层的差异性;4)关注地下、地上物候相互关联及其对植物生产力影响的研究;5)增温与其他环境因子(CO2浓度、氮沉降等)综合作用下的林木地下物候与生态系统功能变化(如碳汇、养分循环等)间联系应是未来研究的重点方向.
...不再出现此类内容
编辑人员丨2024/3/23
-
模拟增温对湿地植物凋落物分解及细菌群落的影响
编辑人员丨2024/2/3
植物凋落物分解是湿地生态系统物质循环的重要组成部分,随着全球气候变化的逐渐加剧,气候变暖对湿地植物凋落物分解的影响已引起人们的广泛关注.本研究通过凋落物袋法对比研究了山东省南四湖湿地中芦苇和香蒲两种典型湿地植物的凋落物分解过程,利用开顶式生长室(Open-top Chamber,OTC)模拟了大气增温(2.0±0.5)℃-(4.0±0.5)℃对凋落物分解特征和细菌群落的影响.结果显示,增温显著加速了两种植物凋落物的分解速率,而木质素/氮(Lignin/N)、纤维素/氮(Cellulose/N)是影响凋落物分解速率的重要因子,与分解速率呈显著负相关.增温显著增加了细菌群落的丰度和多样性,碳是厚壁菌门(Firmicutes)等细菌丰度变化的驱动因子,而木质素、木质素/氮是拟杆菌门(Bacteroidota)等细菌丰度变化的驱动因子.细菌群落共现网络显示,在增温条件下,凋落物分解的细菌群落网络主要由共生关系组成.气候变暖提高了细菌之间的相互关系和互惠程度,加快了植物凋落物的分解进程,进而影响了湿地生态系统的碳收支平衡.
...不再出现此类内容
编辑人员丨2024/2/3
-
森林土壤有机碳分解对模拟增温的响应
编辑人员丨2023/12/30
由化石燃料燃烧和土地利用变化引起的全球气候变暖是地球上最严重的人为干扰之一,对陆地生态系统结构和功能产生重要的影响.土壤有机碳(SOC)是陆地生态系统最大的碳库,其微小变化都会影响全球碳平衡和气候变化.近 30 年来,国内外学者在不同森林生态系统相继开展了野外模拟增温对SOC分解的影响及其调控机制研究.基于在全球建立的 26 个野外模拟气候变暖实验平台,系统分析增温对森林生态系统SOC分解的影响格局和潜在机制,发现增温通常促进森林SOC的分解,对气候变暖产生正反馈作用.然而,因增温方式和持续时间、土壤微生物群落结构和功能的多样性、SOC结构和组成的复杂性、植物-土壤-微生物之间相互作用以及森林类型等不同而存在差异,导致人们对森林SOC分解响应气候变暖的程度及时空格局变化缺乏统一的认识,且各类生物和非生物因子的相对贡献尚不清楚.基于已有研究,从土壤微生物群落结构和功能、有机碳组分以及植物-土壤-微生物互作 3 个方面构建了气候变暖影响SOC分解的概念框架,并进一步阐述了今后的重点研究方向,以期深入理解森林生态系统碳-气候反馈效应,为制定森林生态系统管理措施和实现"碳中和"提供科学依据.1)加强模拟增温对不同森林生态系统(特别是热带亚热带森林生态系统)SOC分解的长期观测研究,查明SOC分解的时空动态特征;2)加强土壤微生物功能群与SOC分解之间关系的研究,揭示SOC分解对增温响应的微生物学机制;3)形成统一的SOC组分研究方法,揭示不同碳组分对增温的响应特征和机制;4)加强森林生态系统植物-土壤-微生物间相互作用对模拟增温的响应及其对SOC分解调控的研究;5)加强模拟增温与其他全球变化因子(例如降水格局变化、土地利用变化、大气氮沉降)对SOC分解的交互作用,为更好评估未来全球变化背景下森林土壤碳动态及碳汇功能的维持提供理论基础.
...不再出现此类内容
编辑人员丨2023/12/30
-
大气CO2浓度升高对玉米非结构性碳水化合物和籽粒品质的影响
编辑人员丨2023/12/9
本试验利用改进的开顶式气室(OTC)在黄土高原长武农业生态试验站田间模拟大气CO2浓度升高环境,设置3 个处理:CK(田间环境,自然大气CO2浓度)、OTC(OTC气室,自然大气CO2浓度)、OTCe(OTC气室,CO2浓度 700 μmol·mol-1),探讨春玉米在不同生育期各器官非结构性碳水化合物(NSC)及籽粒品质(可溶性糖、淀粉和粗蛋白)对大气CO2浓度升高的响应,为揭示旱作区春玉米对大气CO2浓度升高的适应机理提供科学依据.结果表明:大气CO2浓度升高对玉米NSC含量、积累量的影响因器官和生育期不同而异.与CK和OTC相比,OTCe促进了生殖生长阶段叶、茎和根NSC的活化再分配,提高了叶片、茎秆和根系NSC转运到籽粒的量(ATMNSC)、向籽粒的转运率(ARNSC)以及对籽粒的贡献率(ACNSC);与CK相比,OTC带来的增温效应抑制了茎和根 NSC 的活化再分配,促进了叶 NSC 的活化再分配,显著提高了玉米叶 ATMNSC、ARNSC、ACNSC.在两年试验中,大气CO2浓度升高对玉米籽粒可溶性糖、淀粉和粗蛋白含量无显著影响.
...不再出现此类内容
编辑人员丨2023/12/9
-
城市绿地热效应全年变化特征及其与背景气象因子的关系
编辑人员丨2023/11/25
城市绿地能够调节热气候,是城市实现高质量可持续发展的重要空间载体.以往研究着重探讨城市绿地夏季降温效应的空间特征,较少分析绿地热效应的全年变化规律与潜在影响因子.在南京城区选择 7 个代表性城市公园,采用热气候定点观测方法获取公园大气温度全年观测数据,并与城市中心区参照点进行对比,分析公园热效应的全年动态变化规律及背景气象因子的影响.研究发现,由于植被覆盖率、冠层郁闭度及海拔不同,不同公园热效应的季节、昼夜规律存在显著差异,主要表现为 3种形式:全年降温型,全年昼升夜降型,以及夏季全天降温、春秋冬季昼升夜降型.与城市中心区相比,公园夏季最高可降低气温7.7℃,冬季最高可增温3℃.大气温度、相对湿度,风速与太阳辐射4 个背景气象因子能解释23.5%—77.4%的公园热效应变异.夏冬两季日间热效应主要受太阳辐射和气温的影响,夜间热效应主要受风速影响:太阳辐射每升高 100W/m2,夏季日间降温强度减少 0.3℃,冬季日间增温强度增加 0.2-0.5℃;气温每升高 1℃,夏季日间降温强度提高 0.1-0.14℃,冬季日间增温强度提高 0.05-0.08℃;风速每增加 1m/s,夏季夜间降温强度减少 0.05-0.78℃,冬季夜间降温强度减少 0.4-1.1℃.研究结果有助于深入认识城市绿地热效应的复杂形成机制,并为夏热冬冷地区城市自然空间保护与气候适应性设计提供科学参考.
...不再出现此类内容
编辑人员丨2023/11/25
-
植被变化对气候的反馈机制及调节效应
编辑人员丨2023/11/25
植被通过光合作用固定大气中的CO2来减缓温室效应,同时植被也通过改变地表能量收支影响温室效应.在过去的气候-植被研究中,大多关注气候变化对植被的影响,而植被对气候反馈的研究相对较少.植被通过调节地表能量收支、水通量等重要地气过程影响局地、区域乃至全球气候,在气候变化中的作用十分重要.因此,需要厘清植被对气候的反馈效应机制及其结果,并识别其地域差异.从生物地球物理和生物地球化学过程两方面分析植被与气候之间的作用机制,对全球及关键区域内植被变化对局地、区域乃至全球的气候反馈效应进行了系统总结:(1)生物地球物理反馈的区域特征明显,生物地球化学反馈则表现在全球尺度上,二者相互作用但难以统一;(2)植被破坏带来的气候影响在气温效应方面与生态系统的类型及地理分布相关:热带森林破坏带来增温效应,北方森林破坏带来降温效应,温带森林破坏则会通过增加森林反照率抵消丢失的固碳降温效应,气温效应表现不明显;(3)当前研究对关键过程机制考虑不够完善,不同研究方法的结果差异较大,且缺乏高质量观测数据的验证;同时考虑生物地球物理和生物地球化学的净气候反馈研究尚无法支撑植树造林对气候变化单一减缓作用的常规理解.本文可为科学评估植树造林对气候变化作用的方向与强度提供理论依据.
...不再出现此类内容
编辑人员丨2023/11/25
-
大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响
编辑人员丨2023/8/6
大气增温对湿地植物光合作用的影响及其作用机制是近年来生态学界关注的热点.采用开顶式生长室(Open-topchambers,OTCs)模拟大气增温((2.0±0.5)℃,(3.5±0.5)℃),研究增温对滇西北高原典型湿地纳帕海湖滨带2种优势植物(茭草Zizania caduciflora,黑三棱Sparganium stoloniferum)的光和CO2利用以及光合碳同化速率的影响.结果表明,(1)增温对不同植物的光和CO2利用能力以及碳同化速率的影响存在种间差异.增温显著降低了茭草的光饱和点(LSP)、光补偿点(LCP)、光能利用幅(LSP-LCP)、CO2饱和点(CSP)、CO2利用幅(CSP-CCP)以及最大净光合速率(Pnmax),却显著增加了其CO2补偿点(CCP);相反,增温显著提高了黑三棱的LSP、(LSP-LCP)以及最大净光合速率(Pnmax),而显著降低了其LCP,但对其CO2利用参数无显著影响.(2)2种植物的光和CO2利用能力对增温的响应存在季节性差异.不同温度处理下,茭草在6、8月的LSP和(LSP-LCP)均显著高于10月的对应值,其Pnmax也随生长期的增加而降低;黑三棱的光响应参数在不同生长季间无显著差异,其Pnmax在8月最高,而在6月和10月相对较低.(3)温度因子与茭草的光能利用参数均呈负相关,而与黑三棱的光能利用参数均呈正相关.本研究的温度因子中,日间积温对Pnmax和(LSP-LCP),年均温和最低温对(CSP-CCP)值的影响最为显著.本研究进一步表明,气候变暖对滇西北高原湿地湖滨带优势植物光合作用存在影响,但不同物种间存在差异响应,这种差异响应可能导致湿地生态系统植被结构的改变,其有关生态过程有待于进一步研究.
...不再出现此类内容
编辑人员丨2023/8/6
