-
机器学习优化能谱CT预测胃腺癌的浸润性
编辑人员丨1秒前
目的 探讨机器学习(ML)算法结合能谱CT定量参数和临床模型在预测胃腺癌(GAC)患者淋巴血管浸润(LVI)和神经周围浸润(PNI)的潜在价值.方法 收集2017年12月-2022年5月经病理证实的GAC患者114例.研究参数涉及血清肿瘤标志物、CT-TN分期、CT评估壁外血管浸润(CT-EMVI)以及能谱CT定量参数.通过WEKA软件的Best-First算法进行特征筛选,并运用贝叶斯网络(BN)及支持向量机(SVM)算法建立模型.结果 相较于LVI/PNI阴性组,LVI/PNI阳性组中CT-T3~4期、CT-N阳性、CT-EMVI阳性、血清肿瘤标志物[糖类抗原(CA)72-4和CA19-9]更为常见,能谱CT参数也更高,差别均有统计学意义(P<0.05).经特征选择,关键变量包括CT-T分期、CT-EMVI、VP-NIC和EP-70 keV CT值.基于这些变量,分别使用BN和SVM构建临床参数模型、能谱CT参数模型和混合模型,共6个模型.6个模型均展现了高预测性能,无过拟合现象.BN的混合模型预测性能最佳,AUC值为0.890~0.933,Delong检验显示其在统计学上具有显著优势(P<0.05);而SVM的混合模型与另外2种模型间的差别无统计学意义(P>0.05).结论 结合临床和能谱CT参数的ML模型能够高效能评估GAC患者的LVI和PNI状态,其中BN混合模型的准确性最高.
...不再出现此类内容
编辑人员丨1秒前
-
人工智能在创伤性出血救治中的应用及其研究进展
编辑人员丨6天前
人工智能在创伤性出血救治中的应用和研究取得了显著进展.为深入了解人工智能在创伤救治中的作用,本文作者对其在创伤性出血的诊断和治疗策略中的应用进行了文献综述,旨在比较不同AI算法在处理创伤性出血患者数据时的表现,选择最适合临床决策支持的算法从而提高其在实际临床应用中的准确性和有效性.
...不再出现此类内容
编辑人员丨6天前
-
基于半监督网络的前交叉韧带损伤膝关节磁共振诊断辅助研究
编辑人员丨6天前
目的 本研究基于半监督算法残差网络(semi-supervised algorithm Residual network,SMRNet)的深度学习方法,探索其在计算机辅助自主分析膝关节MRI诊断前交叉韧带(anterior cruciate ligament,ACL)损伤方面的应用.方法 使用100名经过关节镜确认的ACL损伤患者和100名关节镜确认无ACL损伤的患者的术前MRI图像.在选取适当层面后,裁剪并用于SMRNet的训练.SMRNet对单个MRI切片上ACL损伤的概率进行最终判断.4名临床医师对相同图像进行读片诊断.结果 SMRNet分类的敏感性、特异性、准确性、阳性预测值和阴性预测值分别为97.00%、94.00%、95.50%、94.17%和96.91%.医师的整体阅片情况类似,敏感性区间91.00%~96.00%、特异性区间90.00%~94.00%、准确性区间90.50%~95.00%、阳性预测值区间90.09%~94.12%、阴性预测值区间90.90%~95.92%,二者差异无统计学意义(P>0.05).结论 经过训练的SMRNet模型在ACL损伤检测上超越部分临床医师,为膝关节MRI诊断提供高效可靠方法,展现深度学习在医学影像的潜力.未来,SMRNet有望成为膝关节MRI诊断的重要工具,为患者提供更精准的诊疗方案.
...不再出现此类内容
编辑人员丨6天前
-
基于XGBoost机器学习算法的肺结节浸润性预测模型构建与验证:一项双中心研究
编辑人员丨6天前
目的 采用XGBoost机器学习算法构建一个临床影像模型,预测肺结节病理浸润性,并在一个外部验证组中对模型进行泛化性验证.方法 回顾性纳入CT诊断为孤立性肺结节患者248例,分别提取肺结节区域和结节周围3mm、5mm区域的放射组学特征.经过从粗到细的特征选择后,使用最小绝对收缩和选择算子(LASSO)方法计算Radscore.采用单因素和多因素Logistic回归分析筛选与肺结节浸润性相关的临床放射学因素.然后,利用Logistic和XGBoost算法构建临床-放射组学联合模型,在一个独立的外部验证组(n=147)中评估模型的泛化性能.结果 综合Radscore、CT值、肺结节长度、月牙征的临床放射学XGBoost联合模型对肺结节浸润性的预测效果优于放射组学模型、临床放射学Logistic联合模型,在训练队列中的曲线下面积AUC为0.889(95%CI,0.848~0.927),在外部验证组中曲线下面积AUC为0.889(95%CI,0.823~0.942).结论 我们采用XGBoost机器学习算法构建了一种预测肺结节浸润性的临床放射学模型,结果显示出令人满意的预测效能,并在一个独立外部验证组中得到了良好的泛化性验证,可以帮助临床医生指导肺结节的诊疗并制定评估策略.
...不再出现此类内容
编辑人员丨6天前
-
基于特征融合AEBGNet的运动想象脑电分类算法
编辑人员丨6天前
针对机器学习方法在对脑电特征进行分类时无法同时兼顾脑电信号的时-空域特征的问题,利用添加注意力机制的卷积神经网络提取空间特征和双向门控循环单元提取时间特征,提出一种基于特征融合的运动想象(Motor Imagery,MI)脑电分类算法(Attention-EEGNet-BiGRU,AEBGNet),AEBGNet可将时、空域两类特征相融合,得到更具表征性的时-空域特征,最终构建的AEBGNet分类模型在BCI competition IV 2b数据集上取得80.37%的平均正确率,比标准的EEGNet方法提高6.09%.结果表明,本文方法可以有效提高MI脑电信号的分类正确率,为MI脑电信号的分类提供新的思路.
...不再出现此类内容
编辑人员丨6天前
-
基于深度学习超声组学列线图评估浸润性乳腺癌侵袭转移的价值
编辑人员丨6天前
目的 探讨深度学习超声组学列线图评估浸润性乳腺癌侵袭转移生物学特性指标的价值.资料与方法 回顾性收集2021年1月—2022年12月茂名市人民医院180例经病理证实浸润性乳腺癌患者的超声影像资料,且病理报告了淋巴结转移(LNM)或淋巴血管间隙浸润(LVSI)或神经侵犯(PNI)状态,依据LNM/LVSI/PNI状态,3个指标均以8∶2划分为训练队列和验证队列.基于Pyradiomics影像组学和ResNet50深度学习提取器分别提取1 316个影像组学特征和2 048个深度学习特征.采用随机森林机器学习算法开发评估模型,并计算模型评分.基于影像组学和深度学习模型评分开发深度学习超声组学列线图.使用受试者工作特征曲线评估模型的性能,Delong检验分析不同模型的性能差异.结果 在LNM、LVSI、PNI状态评估中,所有队列列线图曲线下面积均表现中度以上评估性能(≥0.73),准确度均>0.70,LNM评估中,训练队列的曲线下面积为0.97,准确度为0.93,敏感度为0.88,特异度为0.96.Delong检验显示列线图评估性能在训练队列中优于影像组学模型(LNM,Z=2.04,P=0.04;LVSI,Z=2.80,P=0.01;PNI,Z=3.52,P<0.01),优于或与深度学习模型相似(LNM,Z=4.52,P<0.01;LVSI,Z=1.86,P=0.06;PNI,Z=0.31,P=0.76).结论 深度学习超声组学列线图可有效评估浸润性乳腺癌侵袭转移生物学特性指标.列线图整合影像组学与深度学习特征信息提高了评估性能.
...不再出现此类内容
编辑人员丨6天前
-
基于磁共振影像组学和语义特征对高级别胶质瘤和转移瘤的鉴别研究
编辑人员丨6天前
目的本研究旨在结合传统MRI序列及增强检查,提取多模态高通量影像组学特征并联合语义特征,使用不同的机器学习分类器构建不同的模型并绘制列线图来鉴别高级别胶质瘤(high-grade glioma,HGG)和单发性脑转移瘤(solitary brain metastasis,SBM).材料与方法本研究对101名患者的多参数MR图像进行了回顾性分析,由两位资深医师标定肿瘤感兴趣区,然后对每个序列分别提取影像组学特征后进行组合,共提取428组影像组学特征.为消除人为标定差异,进行组内相关系数一致性检验,并运用最大相关最小冗余算法选取最具相关性的特征,然后进一步通过最小绝对收缩和选择算子算法筛除冗余特征.本研究采用支持向量机、逻辑回归、随机森林及K近邻四种算法建立分类模型.结合放射科医生评估的七项语义特征,通过卡方检验和多因素分析去除差异无统计学意义的语义特征.然后结合组学特征建立综合模型并绘制列线图.最终,评价各模型的诊断能力,以确定最优分类器.结果HGG及SBM患者建立的影像组学模型中LR的受试者工作特征曲线下面积(area under the curve,AUC)值最高,训练集与测试集分别为0.90和0.90.语义特征建立的模型中随机森林模型性能最好,训练集和测试集AUC分别为0.82和0.87.语义特征联合影像组学评分后采用逻辑回归建立的模型性能最好,训练集和测试集AUC分别为0.91和0.92.结论本研究使用影像组学机器学习分类器并联合其他图像语义特征绘制列线图对HGG及SBM进行鉴别,这是一种非侵入性方法,具有较好的准确性,为临床决策和实践提供了较大的帮助.
...不再出现此类内容
编辑人员丨6天前
-
可视化影像决策模型在评估肺结节浸润程度中的价值
编辑人员丨6天前
目的:探讨基于临床资料、影像征象和影像组学特征构建的联合模型在术前对肺结节浸润程度的预测价值,并通过决策热图及Shapley算法对模型进行可视化分析.方法:回顾性搜集2018年1月—2022年3月在本院经病理确诊的179例肺结节患者的临床资料和术前CT图像(肺窗平扫).根据肺肿瘤新分类,分为腺体前驱病变组(78例)和浸润性肺腺癌组(101例).采用Deepwise软件,分别提取瘤灶、瘤周3 mm和5 mm区域的影像组学特征.使用单因素分析、相关性分析、Boruta算法和逐步logistic回归分析等特征筛选算法确定各区域的最佳组学特征,然后采用logistics方法分别构建3个单区域及2个多区域(肿瘤+瘤周3 mm及肿瘤+瘤周5 mm)共5个影像组学模型,分析各模型的预测效能并计算其影像组学评分(Radsocre).通过单因素和多因素logistic回归方法筛选相关临床指标和结节的主要CT征象,并采用XGBoost算法将筛选出的高危因素结合瘤灶+瘤周3 mm联合模型的影像组学得分构建临床影像联合模型.额外收集浙江省嘉兴市中医医院经病理证实的69例肺结节患者的临床和CT资料来完成联合模型的泛化性验证.利用决策热图和Shapley算法对模型分别进行可视化和特征贡献度分析.结果:相比单区域影像组学模型(训练集:AUC=0.740、0753、0.768;验证集:AUC=0.841、0.856、0.809),多区域影像组学模型在两个数据集中均显示出更高的预测效能(AUC=0.878和0.834).XGBoost联合模型的预测效能得到进一步地提高(AUC=0.948和0.886).Shap-ley分析显示影像组学得分、CT值和结节长度为预测肺结节浸润程度的最重要的3个特征.决策热图算法实现了对浸润性预测推演过程的可视化.结论:XGBoost模型对肺结节浸润性的评估具有较高的准确性和泛化性.决策热图实现了可解释机器学习算法的可视化从而保障了模型的实用性,为肺结节的临床处理及管理提供了一种无创性的辅助诊断工具.
...不再出现此类内容
编辑人员丨6天前
-
列线图与机器学习算法预测中老年龋齿的比较研究
编辑人员丨6天前
目的 对比列线图与不同机器学习算法构建中老年人龋齿预测模型的效能.方法 采用多阶段分层随机抽样法,选取南宁市、贵港市、崇左市510名中老年人为研究对象,进行问卷调查及口腔检查.采用单因素分析和Lasso回归筛选相关变量,使用多因素logistic回归分析确定最终独立影响因素.基于显著特征,建立列线图预测模型,并运用线性判别分析(LDA)、偏最小二乘算法(PLS)、距离多普勒算法(RDA)、广义线性模型(GLM)、随机森林(RF)、支持向量机(SVM)核函数(SVM-Radial)及SVM线性核函数(SVM-Linear)7种机器学习算法构建7种龋齿风险预测模型.采用受试者工作特征(ROC)曲线下面积(AUC)中位数评价各模型预测性能,以及不同变量筛选方法所构建模型的预测性能.结果 中老年人龋齿检出率为71.18%.经过特征筛选后最终保留5个预测因子,分别是年龄(OR=0.945,95%CI:0.917~0.973)、刷牙频率(OR=0.688,95%CI:0.475~0.997)、过去1年是否洗牙(OR=0.303,95%CI:0.103~0.890)、牙存留数(OR=1.062,95%CI:1.038~1.087)和口腔健康评估量表(OHAT)得分(OR=1.363,95%CI:1.234~1.505).各模型对比结果显示,RF算法所构建的预测模型表现最佳,AUC中位数为0.747,其次为列线图,AUC中位数为0.733.单因素+Lasso+多因素logistic(简称Lasso+logistic)筛选自变量构建预测模型的AUC中位数均高于RF算法筛选自变量构建的预测模型.结论 基于Lasso+logistic筛选变量,RF较列线图及其他机器学习算法在中老年龋齿预测中提供了更可靠的预测性能.
...不再出现此类内容
编辑人员丨6天前
-
基于卷积神经网络的"舌边白涎"舌象识别研究
编辑人员丨6天前
目的 通过机器学习分析"舌边白涎"舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能.方法 使用Python进行图像预处理,搭建用于舌象识别的视觉几何组 16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对"舌边白涎"舌象鉴别分析的效果,并结合热力图分析"舌边白涎"典型舌象表现.结果 基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16 及残差网络 50 层(residual network 50,ResNet50)模型验证准确率均较高,达到 80%以上,且ResNet50 模型优于VGG16 模型,可为舌象识别提供一定参考.基于加权梯度类激活映射(gradient-weighted class activa-tion mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析.结论 基于卷积神经网络模型对舌象数据库进行分析,实现"舌边白涎"舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴.
...不再出现此类内容
编辑人员丨6天前
