-
基于可解释性机器学习模型的轻型缺血性卒中复发预测研究
编辑人员丨6天前
目的 利用可解释的机器学习模型,探讨轻型缺血性卒中(minor ischemic stroke,MIS)2年内复发相关危险因素.方法 回顾性收集2020年7-12月山西省心血管病医院神经内科MIS患者一般资料、实验室结果、影像学等资料,单因素分析进行复发危险因素变量筛选,合成少数过采样技术-标称连续处理数据不平衡,数据集按8∶2的比例分为训练集与测试集,网格搜索10折交叉验证构建轻量梯度提升机(light gradient boosting machine,LightGBM)、支持向量机(support vector machine,SVM)模型,并与逻辑回归(logistic regression,LR)模型进行比较,基于ROC的AUC、校准曲线分别评价模型的区分度与校准度,性能最好的模型通过Shapley加性解释(Shapley additive explanation,SHAP)模型对预测结果进行解读.结果 本研究共纳入520例MIS患者,2年内复发93例(17.9%),测试集中LightGBM、SVM、LR预测患者2年内复发的AUC分别为0.935(95%CI 0.896~0.973)、0.833(95%CI 0.770~0.896)、0.764(95%CI 0.691~0.835),准确度分别为0.890、0.773、0.693,布里尔分数分别为0.105、0.167、0.200.结果 显示LightGBM模型性能最优,基于SHAP的LightGBM可解释模型重要性前5的是舒张压、年龄、糖尿病、LDL-C、吸烟.结论 本研究建立的LightGBM模型预测效果良好,可为MIS患者2年内复发的预测提供借鉴.通过SHAP可解释性帮助临床医师更好地理解预测模型结果背后的原因,对MIS患者做出更个性化与合理化的临床决策.
...不再出现此类内容
编辑人员丨6天前
-
基于SHAP值特征选择的γ通过率分类预测及解释
编辑人员丨6天前
目的:探索SHAP值结合极端梯度提升树(XGBoost)算法的特征选择技术来构建调强放疗γ通过率预测模型的可行性和有效性,并给出相应的模型解释。方法:回顾性分析2020年11月至2021年11月在湖南省肿瘤医院接受盆腔固定野调强放射治疗的196例肿瘤患者采用基于模体测量方式的调强放疗计划的剂量验证结果,γ通过率标准为3%/2 mm、10%剂量阈值。提取基于剂量文件的影像组学特征并使用SHAP值结合XGBoost算法进行特征筛选后构建预测模型。分别选取特征数量为50、80、110、140个,构建四种机器学习分类模型,计算曲线下面积(AUC)值、召回率及F1分数评估预测模型的分类性能。结果:基于SHAP值特征选择的110个特征构建的预测模型AUC值为0.81,召回率达到0.93,F1分数为0.82,均优于其他三个模型。结论:针对盆腔肿瘤调强放疗计划,可以采用SHAP值与XGBoost算法结合以选择用于预测的最佳影像组学特征子集来构建γ通过率的预测模型,并能通过SHAP值给出模型输出解释,可能在理解依赖机器学习模型所做的预测方面提供价值。
...不再出现此类内容
编辑人员丨6天前
-
可解释的机器学习模型预测缺血性脑卒中患者预后研究
编辑人员丨6天前
目的:探讨可解释的机器学习模型预测急性缺血性脑卒中预后的应用价值。方法:选取广东医科大学附属湛江中心医院神经内科自2020年3月至2023年10月实施静脉溶栓治疗的296例急性缺血性脑卒中患者为研究对象,随访3个月后使用改良Rankin量表评估预后(0~2分定义为预后良好,3~6分定义为预后不良)。回顾性收集患者的临床资料,并采用多因素Logistic回归分析筛选出患者预后的独立影响因素。以3∶2比例将患者随机分为训练集( n=178)和测试集( n=118),以预后独立影响因素为特征变量训练10种机器学习模型(逻辑回归、随机森林、支持向量机、朴素贝叶斯、线性判别分析、混合判别分析、灵活判别分析、梯度增强机、极端梯度提升和分类梯度提升),分别使用校准曲线、精确-召回曲线、精确-召回增益曲线及受试者工作特征曲线评估这10种机器学习模型的预测性能,使用Shapley加法解释(SHAP)对机器学习模型附加解释和可视化(包含全局解释和局部解释)。 结果:296例患者中预后不良72例。年龄( OR=1.039,95% CI:1.008~1.072, P=0.015)、美国国立卫生研究院卒中量表评分( OR=1.213,95% CI:1.000~1.337, P<0.001)、格拉斯哥昏迷量表评分( OR=0.470,95% CI:0.289~0.765, P=0.002,)、卒中预测工具-Ⅱ评分( OR=1.257,95% CI:1.043~1.516, P=0.016)、C反应蛋白水平( OR=1.709,95% CI:1.398~2.087, P<0.001)和血小板计数( OR=0.988,95% CI:0.978~0.998, P=0.016)是患者预后的独立影响因素。在10种机器学习模型中,极端梯度提升模型预测患者预后的性能最高(校准曲线评估示一致性指数为0.896,精确-召回曲线评估示曲线下面积为0.791,精确-召回增益曲线示曲线下面积为0.363,受试者工作特征曲线示曲线下面积为0.856)。全局解释中SHAP直观图显示特征变量的重要性排序依次为C反应蛋白、美国国立卫生研究院卒中量表评分、血小板计数、格拉斯哥昏迷量表评分、卒中预测工具-Ⅱ评分和年龄;SHAP散点图可视化了6个特征变量的贡献方向,呈"两端分布"现象;SHAP依赖图显示了6个特征变量的观测值与SHAP值间的依赖关系,其中C反应蛋白趋势最为显著。SHAP力图为单个样本提供了局部解释,使得极端梯度提升模型更加透明和可解释性。 结论:基于年龄、美国国立卫生研究院卒中量表评分、格拉斯哥昏迷量表评分、卒中预测工具-Ⅱ评分、C反应蛋白水平和血小板计数为特征变量的极端梯度提升模型预测急性缺血性脑卒中患者预后的性能最优,在此基础上结合SHAP进行模型解释和可视化,有助于理解各特征变量对预测结果的贡献大小及方向。
...不再出现此类内容
编辑人员丨6天前
-
伴右向左分流隐源性卒中患者发病风险预测模型研究
编辑人员丨6天前
目的:利用机器学习预测右向左分流(right-to-left shunt,RLS)人群隐源性卒中(cryptogenic stroke,CS)发病风险,为CS的准确和高效预测提供解决方案。方法:回顾分析2018年1月至2023年9月在青岛大学附属医院崂山院区神经内科治疗的经颅多普勒超声发泡试验(c-TCD)阳性的289例RLS人群的临床数据,包括人口统计学信息、疾病史、实验室检查指标、诊断和治疗等。使用机器学习train_test_split()函数将数据集随机分为训练集和测试集,比例为8∶2。采用Logistic回归、决策树、随机森林、极端梯度提升、人工神经网络、梯度提升、极限树和自适应增强等算法构建RLS人群CS风险预测模型,使用受试者工作特征曲线(receiver operating characteristic,ROC)及曲线下面积(area under curve,AUC)、混淆矩阵、精确率、召回率、准确率、F1值、校准曲线、决策曲线等综合评估模型性能。性能最优的模型使用特征重要性和SHAP值进行可解释性分析。使用SPSS 25.0进行 t检验、Mann-Whitney U检验和 χ2检验。采用Delong检验比较两模型间AUC的差异。 结果:289例RLS人群发生CS 166例(57.5%),非CS 123例(42.5%)。统计分析结果显示,CS患者D-二聚体、平均血小板体积、纤维蛋白原等血液生化指标高于非CS患者(均 P<0.01);训练集与测试集各变量均差异无统计学意义(均 P>0.05)。对测试集进行CS风险预测,随机森林模型取得了最高的AUC(0.885)、精确率(0.806)、召回率(0.879)、准确率(0.810)以及F1得分(0.841)。校准曲线显示随机森林模型最接近参考线,决策曲线表明随机森林模型具有更大的净受益。可解释性分析显示高风险因素包括平均血小板体积、D-二聚体、国际标准化比值、体质量指数以及年龄。 结论:基于随机森林的预测工具表现出色,在预测RLS人群CS风险方面准确性较高。
...不再出现此类内容
编辑人员丨6天前
-
机器学习方法构建老年心房颤动合并冠心病患者远期死亡的预测模型研究
编辑人员丨6天前
目的:利用机器学习方法建立老年心房颤动(房颤)合并冠心病患者的远期死亡预测模型,并确定相应的危险因素。方法:回顾性队列研究,连续入组2013年1月至2015年3月北京医院收治的60岁及以上房颤合并冠心病患者329例,男性183例(55.6%)例,女性146例(44.4%),年龄(77.8±7.3)岁,80岁及以上142例(43.2%)。失访11例(3.3%),死亡151例(45.9%),最后纳入分析的患者共318例。根据患者生存结局,将318例患者分为死亡组(151例)和存活组(167例)。此外,另选取2015年4—7月入院的60岁及以上房颤合并冠心病患者60例为外部数据验证集。采集人口统计学参数、合并疾病、辅助检查和临床治疗情况。随访至少6年,记录包括死亡在内的主要不良心脑血管事件(MACCE)。最后将入组患者按9∶1的比例随机分为训练集和测试集,通过机器学习算法建立不同模型预测房颤合并冠心病患者远期死亡率,并通过外部数据(60例)验证比较确立最优模型,利用Shapley加法解释算法对变量的重要性进行排序,得出排名前20位的特征变量,以确定危险因素。结果:329例患者中,总体中位随访时间77.0月(95% CI:54.0~84.0),失访11例(3.3%),死亡151例(45.9%)。通过分析得出支持向量机模型、k-近邻算法(KNN)模型、决策树模型、随机森林模型、ADABoost模型、XGBoost模型、Logistic回归模型预测远期死亡率的受试者工作特征曲线(ROC)下面积(AUC)分别为0.76、0.75、0.75、0.91、0.86、0.85和0.81。其中随机森林模型预测效能最高,其准确率达0.789,F1值高达0.806,且优于传统的Logistic回归模型(AUC:0.91比0.81, P<0.05)。D-二聚体、年龄、MACCE次数、左心室射血分数、人血白蛋白水平、贫血、纽约心脏病协会心功能分级、陈旧性心肌梗死病史、估测肾小球滤过率(eGFR)及静息心率是预测远期死亡率的重要危险因素。 结论:基于机器学习方法建立的随机森林模型可预测老年房颤合并冠心病患者的远期死亡率,具有较好的识别能力,其准确性高于传统的Logistic回归模型。可通过干预患者的D-二聚体水平、纠正低蛋白血症和贫血、改善心功能和控制静息心室率降低远期死亡率,改善患者远期预后。
...不再出现此类内容
编辑人员丨6天前
-
机器学习在脓毒症相关性急性肾损伤中应用的研究进展
编辑人员丨6天前
脓毒症相关性急性肾损伤(SA-AKI)是脓毒症的常见并发症,发病率较高,且与患者的不良预后密切相关,但目前针对SA-AKI诊断滞后,且无特异性治疗手段,给SA-AKI的系统化管理带来困难。机器学习技术可以基于海量的临床数据构建模型,并根据模型预测结果来辅助临床决策,尽管目前还面临可解释性差等诸多挑战,但在SA-SKI风险预测、影像学诊断、亚型鉴定和预后评估等方面已显现出临床应用价值。本文在简要介绍机器学习的基础上,对机器学习在SA-AKI诊疗中的应用现状、局限性及未来发展方向等方面进行综述,探讨机器学习技术在医疗领域深入应用的可能性,从而促进精准医疗和智慧医疗的发展。
...不再出现此类内容
编辑人员丨6天前
-
机器学习和Logistic回归模型预测心脏外科术后患者发生急性肾损伤的比较分析
编辑人员丨6天前
目的:使用机器学习中极限梯度提升(XGBoost)算法构建心脏外科术后患者发生急性肾损伤(AKI)的风险预测模型,探讨心脏外科术后患者发生AKI的危险因素和保护因素。方法:纳入美国重症监护医学信息数据库Ⅲ(MIMIC-Ⅲ)中全部接受心脏外科手术患者的临床资料,按术后14 d内是否发生AKI分为AKI组和非AKI组,并比较两组患者的临床特征。在五折交叉验证的基础上,分别采用XGBoost和Logistic回归法建立心脏外科术后AKI预测模型,并比较两种模型的受试者工作特征曲线下面积(AUC)。采用沙普利加和解释法(SHAP)解释XGBoost的输出模型。结果:共纳入6 912例心脏外科术后患者,其中5 681例(82.2%)在术后14 d内发生AKI,1 231例(17.8%)未发生AKI。与非AKI组相比,AKI组患者年龄更大〔岁:68.0(59.0,76.0)比62.0(52.0,71.0)〕,急诊入院及合并肥胖、糖尿病比例更高(52.4%比47.8%,9.0%比4.0%,32.0%比22.2%),生命体征指标中呼吸频率(RR)更低〔次/min:17.0(14.0,20.0)比19.0(15.0,22.0)〕,心率(HR)更慢〔次/min:80.0(67.0,89.0)比82.0(71.5,93.0)〕,血压更高〔mmHg(1 mmHg≈0.133 kPa):80.0(70.7,90.0)比78.0(70.0,88.0)〕,实验室指标中血红蛋白(Hb)、血糖、血K +、血肌酐(SCr)更高〔Hb(g/L):122.0(109.0,136.0)比120.0(106.0,135.0),血糖(mmol/L):7.3(6.1,8.9)比6.8(5.7,8.5),血K +(mmol/L):4.2(3.9,4.7)比4.2(3.8,4.6),SCr(μmol/L):88.4(70.7,106.1)比79.6(70.7,97.2)〕,白蛋白(ALB)和三酰甘油(TG)更低〔ALB(g/L):38.0(35.0,41.0)比39.0(37.0,42.0),TG(mmol/L):1.4(1.0,2.0)比1.5(1.0,2.2)〕,且多器官功能障碍综合征(MODS)和脓毒症比例更高(30.6%比16.2%,3.3%比1.9%),差异均有统计学意义(均 P<0.05)。Logistic回归预测模型中的主要影响因素包括血乳酸〔Lac;优势比( OR)=1.062,95%可信区间(95% CI)为1.030~1.100, P=0.050〕、肥胖( OR=2.234,95% CI为1.900~2.640, P<0.001)、男性( OR=0.858,95% CI为0.794~0.928, P=0.049)、伴有糖尿病( OR=1.820,95% CI为1.680~1.980, P<0.001)和急诊入院( OR=1.278,95% CI为1.190~1.380, P<0.001)。受试者工作特征曲线(ROC曲线)分析显示,Logistic回归模型预测心脏外科术后发生AKI的AUC为0.62(95% CI为0.61~0.67)。经过网格搜索与五折交叉验证结合优化XGBoost模型参数,模型训练效果良好,没有出现过拟合或欠拟合。ROC曲线分析结果显示,XGBoost模型预测心脏外科术后发生AKI的AUC为0.77(95% CI为0.75~0.80),明显高于Logistic回归预测模型的AUC( P<0.01)。经SHAP方法处理后,XGBoost输出模型中对最终结果最重要的预测因素是年龄和ALB,其中年龄是危险因素(平均| SHAP值|为0.434),ALB是保护因素(平均| SHAP值|为0.221)。 结论:年龄是心脏外科术后患者发生AKI的重要危险因素,而ALB则是保护因素。机器学习预测心脏外科术后AKI的效能比传统Logistic回归更加优秀,能分析变量与结局间更复杂的关系,更精准地个体化预测术后AKI的发生风险。
...不再出现此类内容
编辑人员丨6天前
-
人工智能在检验医学应用研发中的问题剖析及应对策略
编辑人员丨6天前
人工智能在检验医学中的应用研究已经成为检验发展的重要方向,但人工智能技术在产品应用研发过程中仍存在机器学习模型缺乏可解释性、人才队伍缺乏、安全隐患众多等问题。其原因可能有数据集质量不高、研究设计偏差、人才培养机制不健全、立法和监管不到位等。针对这些形成原因,可以采取相应对策,包括建立数据录入和采集规范,制定数据标注管理标准、做好模型的风险分析,加强复合型人才培养,健全监督管理体系等。确保检验医学领域应用的人工智能产品能够在提升诊断效率、减少误诊和漏诊率的前提下,切实提升医疗服务质量。
...不再出现此类内容
编辑人员丨6天前
-
基于集成机器学习构建胰十二指肠术后胰瘘风险预测模型及其验证
编辑人员丨6天前
目的:构建并验证预测胰十二指肠切除术后患者发生临床相关术后胰瘘(CR-POPF)的集成机器学习模型。方法:本研究为预测模型研究。回顾性收集2020年6月至2023年5月在华中科技大学同济医学院附属协和医院胰腺外科接受胰十二指肠切除术的421例患者的临床资料。其中男性241例(57.2%),女性180例(42.8%),年龄(59.7±11.0)岁(范围:12~85岁)。通过分层随机抽样法将研究对象按照3∶1的比例分为训练集(315例)和测试集(106例)。使用递归特征消除算法对特征进行筛选,运用9种机器学习算法分别建模,挑选拟合能力较优的三组模型,通过Stacking算法进行模型融合构建集成模型。通过多种指标评估模型性能,并使用Shapley Additive Explanations(SHAP)方法对最优模型进行可解释性分析。根据替代胰瘘风险评分系统(a-FRS)的预测概率(P)将测试集患者分为不同风险组,对a-FRS评分进行验证并比较其与所建模型的预测效能。结果:421例患者中,发生CR-POPF 84例(20.0%)。在测试集中,Stacking集成模型表现最佳,其受试者工作特征曲线的曲线下面积(AUC)为 0.823,准确率为0.83,F1分数为0.63,Brier 得分为0.097。SHAP总结图显示,影响胰十二指肠切除术后发生CR-POPF的前9位因素依次为胰管直径、CT值比值、术后血清淀粉酶、IL-6水平、体重指数、手术时间、术前术后白蛋白差值、降钙素原及IL-10。各个因素对胰十二指肠切除术后CR-POPF 发生的影响均呈现出复杂的非线性关系。当胰管直径<3.5 mm、CT 值比值<0.95、术后血清淀粉酶浓度>150 U/L、IL-6 水平>280 ng/L、手术时间>350 min、白蛋白降低超过10 g/L时,发生CR-POPF的风险增加。a-FRS在测试集中的AUC为0.668,预测效能低于Stacking集成机器学习模型。结论:本研究构建的Stacking集成机器学习模型能够预测胰十二指肠切除术后CR-POPF的发生,有潜力成为胰十二指肠切除术后个性化诊疗的有效工具。
...不再出现此类内容
编辑人员丨6天前
-
基于XGBoost算法的机器学习模型在早期预测重症急性胰腺炎中的应用
编辑人员丨6天前
目的:基于极端梯度提升(XGBoost)算法建立重症急性胰腺炎(SAP)早期预测机器学习模型,并探讨其预测效能。方法:采用回顾性队列研究方法,选择2020年1月1日至2021年12月31日苏州大学附属第一医院、苏州大学附属第二医院及苏州大学附属常熟医院收治的急性胰腺炎(AP)患者,根据病历系统与影像系统收集患者的人口学信息、病因、既往史及入院48 h内临床指标和影像学资料,并计算改良CT严重指数评分(MCTSI)、Ranson评分、急性胰腺炎严重程度床旁指数(BISAP)及急性胰腺炎风险评分(SABP)。将苏州大学附属第一医院及苏州大学附属常熟医院的数据集按照8 : 2随机分为训练集和验证集,基于XGBoost算法,在采用五折交叉验证、损失函数进行超参数调整的基础上构建SAP预测模型。将苏州大学附属第二医院的数据集作为独立的测试集,通过受试者工作特征曲线(ROC曲线)评价XGBoost模型的预测效能,并与传统AP相关病情严重程度评分进行比较;同时对特征变量进行重要性排序,采用沙普利加和解释法(SHAP)对模型进行可视化解释。结果:最终共纳入1?183例AP患者,其中129例(10.9%)发生SAP。苏州大学附属第一医院和苏州大学附属常熟医院患者中,训练集786例,验证集197例;苏州大学附属第二医院的200例患者作为测试集。3组数据集分析均显示,进展为SAP的患者存在呼吸功能异常、凝血功能异常、肝肾功能异常、血脂代谢异常等病理表现。基于XGBoost算法构建SAP预测模型;ROC曲线分析显示,该模型预测SAP的准确度达到0.830,ROC曲线下面积(AUC)为0.927,较MCTSI、Ranson、BISAP、SABP等传统评分系统明显提高(准确度分别为0.610、0.690、0.763、0.625,AUC分别为0.689、0.631、0.875、0.770)。基于XGBoost模型的特征变量重要性分析显示,模型中权重排名前10位的指标依次为胸腔积液(0.119)、白蛋白(Alb,0.049)、三酰甘油(TG,0.036)、Ca 2+(0.034)、凝血酶原时间(PT,0.031)、全身炎症反应综合征(SIRS,0.031)、C-反应蛋白(CRP,0.031)、血小板计数(PLT,0.030)、乳酸脱氢酶(LDH,0.029)和碱性磷酸酶(ALP,0.028),说明上述指标对于XGBoost模型预测SAP具有重要意义。基于XGBoost模型的SHAP贡献度分析显示,当患者出现胸腔积液及Alb降低时,SAP发生风险明显增加。 结论:基于机器学习XGBoost算法建立了SAP预测模型,该模型可在入院48 h内对AP患者进展为重症的风险进行预测,且具有良好的准确性。
...不再出现此类内容
编辑人员丨6天前
