-
人工智能辅助肺磨玻璃结节性质及病理成份的临床应用研究
编辑人员丨1周前
目的 研究人工智能医学影像辅助诊断系统对肺磨玻璃结节(GGN)良恶性及判断病理成份的临床应用价值.方法 从行胸部CT检查发现GGN的患者中随机选取符合条件的44例纳入研究.根据病理结果分成腺癌组GGN与炎性病变组GGN,然后根据贴壁成份的占比不同将腺癌组GGN分成高占比组和低占比组,记录2组测量参数(包括病灶长径、平均CT值、CT值标准差、紧凑度、球形度及患者年龄).采用SPSS 20.0软件统计分析2组间差异,对有统计学意义的定量参数进行受试者工作特征曲线(ROC)分析,评价各测量参数鉴别良恶性GGN及判断恶性GGN病理成分的能力,同时根据最大约登指数(YI)计算该测量参数的最佳诊断阈值,获得曲线下面积(AUC)、敏感度和特异度,P<0.05被认为差异具有统计学意义;最后根据二元Logistic回归模型得出鉴别良恶性GGN及判断恶性GGN组织成分的独立危险因素.结果 ①在腺癌组GGN与炎性病变组GGN测量数据对比中,腺癌组GGN病灶长径、平均CT值、CT值标准差大于炎性病变组GGN(P<0.05),腺癌组GGN紧凑度、球形度均小于炎性病变组GGN(P<0.05),而2组GGN患者年龄差异无统计学意义(P>0.05).②在高占比腺癌组GGN和低占比腺癌组GGN测量数据对比中,仅发现高占比腺癌组GGN平均CT值小于低占比腺癌组GGN(P<0.05),其他无差异.③二元Logistic回归模型分析显示,鉴别腺癌GGN与炎症GGN的独立因素为病灶长径;鉴别高占比腺癌GGN和低占比腺癌GGN的独立因素为平均CT值.结论 基于人工智能医学影像辅助诊断系统CT特征定量分析有助于鉴别良恶性GGN,以各项指标联合诊断的效能最佳;但在判断恶性GGN的病理成份方面能力有限,但仍需结合临床其他各项指标进行综合判断才能做出更准确的诊断.人工智能医学影像辅助诊断系统对GGN良恶性及判断病理成份有较大的临床应用价值,以各项指标联合诊断的效能最佳.
...不再出现此类内容
编辑人员丨1周前
-
肩关节加速MRI应用深度学习重建算法的可行性与临床价值
编辑人员丨1周前
目的 探讨深度学习重建算法(DLR)在肩关节MRI中提高图像质量和缩短扫描时间的可行性与临床价值.方法 前瞻性纳入2023年6月至10月期间在南京医科大学第四附属医院的50例疑似患有肩关节病变的患者,采用1.5T MRI行常规序列扫描图像为Fsecon组,使用并行采集加速因子2的扫描图像为Fsefast组,扫描序列包括脂肪抑制质子加权像(PDWI-FS)和T1加权像(T1WI),将Fsefast组传至Subtle MRTMdlr后获得图像Fsedlr组.测量三组图像中的冈上肌、肱二头肌长头肌腱、盂唇软骨、肱骨骨髓的信号噪声比(SNR)及冈上肌/盂唇软骨的对比噪声比(CNR)并进行比较,两名放射科医师双盲采用Likert 4分法分别对Fsedl,组与Fsecon组的图像清晰度和伪影进行主观评价,并对这两组的病理异常结构进行诊断效能对比.结果 相对于Fsecon组,Fsedlr组扫描时间缩短了 44%,且图像清晰度评分、伪影评分均增高,差异有统计学意义(P<0.05),两名医师主观评分组内相关性系数为0.797~0.919.客观评价指标中,Fsedlr组的SNR和CNR均明显高于Fsecon组与Fsefast组,差异均有统计学意义(P<0.05).在两位医师对Fsecon组与FSEdlr组病理异常结构的评估中,两组的诊断结果均有较好的一致性(Kappa值:0.675~1.000),在同一名医师的评估中也显示出极好的一致性(Kappa值:0.771~1.000),其中肱骨骨髓、关节滑囊、肱二头肌长头肌腱的Kappa值均高于0.8.结论 将DLR算法应用于肩关节MRI检查中,能够提高图像质量、缩短图像采集时间,并保证诊断效能,提高检查效率,具有较好的临床价值.
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习牙体分割算法的准确性研究
编辑人员丨1周前
目的:应用建立的全自动AI牙体分割算法,从CBCT影像中实现牙体的快速自动化分割,以口内扫描真实离体牙获得的三维数据作为金标准,验证算法的准确性.方法:从上海交通大学医学院附属第九人民医院收集30套CBCT数据及相应的59颗离体牙,通过建立的算法,分割出CBCT中的牙体三维数据.将离体牙处理后扫描获得的数字化信息作为金标准.为了比较算法分割结果以及扫描结果之间的差异,选取骰子系数(Dice)、灵敏度(sensitivity,Sen)以及平均表面距离(average symmetric surface distance,ASSD)评价算法的分割准确性.选用组内相关系数(ICC)评价AI系统获得单个牙与数字化离体牙的长度、面积和体积差异.由于存在不同体素大小的CBCT,使用ANOVA单因素方差分析不同体素组间的差异,同时通过SNK法对其进行两两比较.采用SPSS 25.0软件包对数据进行统计学分析.结果:算法分割结果与离体牙扫描结果对比后,得到平均Dice值为(94.7±1.88)%,平均Sen为(95.8±2.02)%,平均ASSD为(0.49±0.12)mm.比较数字化离体牙与AI系统获得的单个牙的长度、面积和体积的组内相关系数ICC值,分别为0.734、0.719和0.885,AI系统分割出的单个牙与数字化模型在评价长度、面积和体积时有着较好的一致性,但分割结果在具体数值上与真实情况仍有差异.CBCT体素越小,即分辨率越高,分割结果表现更好.结论:本研究建立的CBCT牙体分割算法能够准确实现各分辨率下CBCT中全牙列的牙体分割.CBCT分辨率提高,能让算法结果更准确.相比目前的分割算法,本研究的算法性能更好.但与实际情况相比,仍有一定差异,需对算法继续改进及验证.
...不再出现此类内容
编辑人员丨1周前
-
线上线下混合联合5E教学模式在临床基本操作中的教学实践
编辑人员丨1周前
目的 旨在探讨线上线下混合式教学联合5E教学模式在临床基本操作中的应用效果,以期改善课程教学质量.方法 以2021年3月4日-2022年5月21日期间在医院修读临床基本操作课程的本科学生为研究对象,将采用线上线下混合式教学联合5E教学模式的2022级学生作为观察组,采用传统教学模式的2021级学生作为对照组,通过对比两组学生的专业能力、综合素质及对所参与教学模式的满意度,客观评价两种教学模式的优劣.结果 理论成绩部分,对照组学生的得分为(40.21±4.33)分,观察组学生的得分为(42.50±4.20)分,差异有统计学意义(t=3.356,P<0.001);实践成绩部分,对照组学生的得分为(40.21±4.33)分,观察组学生的得分为(42.37±4.70)分,差异有统计学意义(t=3.673,P<0.001);在综合素质方面,对照组学生的平均得分为(86.77±4.66)分,观察组学生的平均得分为(90.12±5.35)分,差异有统计学意义(t=4.216,P<0.001);在对教学模式的满意度方面,观察组学生对其教学模式的满意度明显高于对照组,差异有统计学意义(t=5.213,P<0.001).结论 线上线下混合式教学联合5E教学模式在临床基本操作教学中应用效果显著,可以有效提升学生的综合素质,激发学习兴趣,值得在临床基本操作等类似课程中逐步推广.
...不再出现此类内容
编辑人员丨1周前
-
医学图像分割的研究进展
编辑人员丨1周前
医学图像是医生对患者进行病情诊断和治疗规划的有力工具.现今对于医学图像的分割不再局限于手工分割方法,通过传统方法与深度学习方法来实现医学图像分割已经取得更好、更准确的结果.本文基于近年来一些较为出众的医学图像创新分割方法进行综述,通过阐述深度学习方法如SAM、SegNet、Mask R-CNN和U-NET以及传统方法如活动轮廓模型、阈值分割模型创新等,对比各种图像分割方法的异同点,对医学图像分割方法做出总结与展望.以此来帮助学者们更好地了解目前的研究进展与未来的发展趋势.
...不再出现此类内容
编辑人员丨1周前
-
Peyton四步教学法在超声住院医师规范化培训颈部淋巴结分区中的应用
编辑人员丨1周前
目的:探讨Peyton四步教学法在住院医师规范化培训(以下简称"住培")颈部淋巴结超声分区带教中的教学效果。方法:选取2023年9月至2024年5月安徽医科大学第二附属医院超声医学科和皖南医学院第一附属医院超声医学科共计70名住培学生,采用随机数字法将其分为传统教学组(n=35)和Peyton四步教学组(n=35)。通过技能操作、超声读图两种方式对两组学生进行考核,同时依据问卷调查对住培学生进行满意度调查。对比分析两种不同教学方法住培学生的考核成绩与问卷评分。结果:考核结果显示,Peyton四步教学组技能操作成绩、超声读图成绩均高于传统教学组[(44.69±2.33)分vs(41.40±2.78)分,(44.45±2.63)分vs(42.77±2.58)分,P均<0.05]。问卷调查结果显示,Peyton四步教学组提高学习兴趣评分以及缓解考试压力评分均高于传统教学组[(4.60±0.55)分vs(3.66±0.84)分,(4.43±0.65)分vs(3.14±0.60)分],差异均具有统计学意义(P均<0.05)。结论:Peyton四步教学法可提高住培学生在颈部淋巴结超声分区中的技能操作、超声读图成绩,激发住培学生的学习兴趣,并缓解规范化培训考试压力,可作为住培学生颈部淋巴结分区带教的有效手段,提高超声规范化培训带教的教学效果。
...不再出现此类内容
编辑人员丨1周前
-
融合多尺度注意力的脊柱侧弯Cobb角自动估计算法
编辑人员丨1周前
目的 青少年特发性脊柱侧弯(adolescent idiopathic scoliosis,AIS)是危害青少年健康的常见疾病之一.临床上,X线图像Cobb角测量法是评估患者脊柱侧凸严重程度的"金标准".由于X线图像中肋骨和骨盆阴影重叠以及椎骨形态差异等因素影响,人工测量在寻找关键点时步骤复杂且耗时长,快速且准确的Cobb角自动测量方法具有重要临床应用价值.现有深度学习方法中基于分割的方法易受图像质量影响;基于关键点检测方法过于关注局部特征提取导致定位不准确等问题.为此,本文提出了一种以椎骨为中心的标志点检测方法,来实现脊柱侧弯Cobb角自动估计算法.方法 构建一种基于融合多尺度和注意力机制M型椎骨检测网络(multi-scale attention M-shaped network,MSAM-Net).首先,使用多尺度金字塔拆分注意力(multi-scale pyramids squeeze attention,MPSA)模块和注意力特征融合(attentional feature fusion,AFF)模块提取椎骨特征和上下文信息,然后,根据椎体中心和角偏移量定位4个角标志点,以在脊柱侧弯评估任务中提高椎骨标志点检测的性能,进而实现近胸段、主胸段和胸腰段曲线的Cobb角估计.结果 为了评估Cobb角估计与真实侧弯角度之间的偏差程度,本研究算法基于AASCE MICCAI 2019挑战赛数据集,使用4种指标对Cobb角精度进行评估,分别是对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)、欧氏距离(Euclidean distance,ED)、曼哈顿距离(Manhattan distance,MD)和切比雪夫距离(Chebyshev distance,CD).测试得到SMAPE为9.39%,ED为4.18;MD为5.92;CD为5.34.与基于分割和检测的5种深度学习方法进行对比,实现更好的Cobb角测量结果.结论 本研究可以准确识别和定位X线图像中椎骨,帮助医生测量AIS患者的Cobb角,为临床AIS诊断、手术计划和脊柱健康分析提供决策支持.
...不再出现此类内容
编辑人员丨1周前
-
基于ConvNeXt模型的胸部X线图像的疾病分类与可视化
编辑人员丨1周前
目的 胸部X线是临床实践中常见的胸部疾病筛查和诊断方式.由于放射科医生长时间阅片容易视觉疲劳以及医疗资源分配不均衡的问题,导致误诊和漏诊的情况时有发生.针对这一问题,本研究运用深度学习技术,提出了一个基于ConvNeXt模型的胸部X线图像的疾病检测方法,旨在提高胸部疾病诊断准确度、减轻误诊风险并提高医生工作效率.方法 利用大规模公开胸部X线图像数据集ChestX-ray14训练ConvNeXt模型,该模型在ResNet模型的基础上,融合了视觉Transformer结构的优势,可以有效提高模型的特征提取和识别能力,同时以AUC(ROC曲线下方的面积)作为模型性能的评价指标,与已有的分类模型CheXNet、ResNet及Swin Transformer进行了对比.此外,通过引入Grad-CAM可视化方法,利用卷积神经网络特征图的梯度信息生成胸部X线图像的类激活热力图,实现对病灶区域的定位,从而提高医生的诊断效率.结果 基于ConvNeXt模型的诊断方法在识别14种胸部疾病时平均AUC值可达0.842,特别在识别积液(AUC值为0.883)、水肿(AUC值为0.902)和疝气(AUC值为0.942)等疾病时表现较为令人满意.结论 本文提出的方法在胸部X线图像的疾病检测中具有较好的性能,是一种对胸部X线图像进行胸部疾病诊断进而协助医生提高工作效率的有益尝试.
...不再出现此类内容
编辑人员丨1周前
-
深度学习图像重建算法对改善直肠CT图像质量的临床应用价值
编辑人员丨1周前
目的:探索深度学习图像重建(DLIR)算法是否可以改善静脉期肛管直肠的CT图像质量.方法:回顾性纳入进行腹部CT增强扫描的71例患者,所有影像资料使用50%ASiR-V和DLIR低、中、高(DLIR-L、DLIR-M、DLIR-H)3个强度的DLIR重建静脉期薄层图像.测量各组图像的肛管和臀部脂肪的CT值和标准差(SD),以臀部脂肪SD作为背景噪声,计算肛管对比噪声比(CNR)和信噪比(SNR).两名影像科医师使用Likert 5分量表法独立进行图像质量评估和直肠癌局部侵犯情况诊断信心评价.分析比较客观测量指标和图像主观评分,采用Kappa检验评估一致性.结果:各组间肛管CT值及臀部脂肪CT值比较差异没有统计学意义(P>0.05),脂肪SD、肛管SNR及CNR比较差异有统计学意义(P<0.05),DLIR-H组脂肪SD最低,SNR及CNR最高,而50%ASiR-V组脂肪SD最高,SNR及CNR最低.与50%ASiR-V组相比,DLIR-H组脂肪SD降低44.3%,肛管SNR及CNR分别提升89.5%和92.1%(P<0.05).4组图像质量主观评分比较差异有统计学意义(P<0.05),从DLIR-H到50%ASiR-V依次降低.其中50%ASiR-V、DLIR-L组间比较差异没有统计学意义(P>0.05),其余各组间比较差异均有统计学意义(P<0.05).各组间直肠癌局部侵犯情况诊断信心评分比较差异有统计学意义(P<0.05),DLIR-M及DLIR-H组优于50%ASiR-V组(P<0.05).结论:与标准50%ASiR-V图像相比,DLIR-M和DLIR-H重建算法能有效提高图像质量,重建强度越高,图像质量越好,显示细微结构的能力越强,能为临床精准评估及个体化精准治疗提供更多的依据.
...不再出现此类内容
编辑人员丨1周前
-
CAMU-Net:基于Attention U-Net的视网膜血管分割改进模型
编辑人员丨1周前
提出一种改进的U-Net模型(CAMU-Net),以达到精准分割视网膜血管的目的.CAMU-Net模型通过添加残差增强模块来提取区域特征中的重要信息,增强模型对区域特征的了解;通过添加特征细化模块来促进特征的提取,提高新模型的全局特征收集能力;通过添加通道注意力机制模块来捕捉图像特征,精确分割结果;通过引入多尺度特征融合结构来提升模型感知目标边界等细节的能力.在DRIVE数据集上进行消融实验,得出各模块的实际效果,验证各模块对于本模型视网膜血管分割各方面提升的作用;在DRIVE和STARE数据集上和其他主流网络模型进行对比分析,结果表明CAMU-Net模型优于其他模型.
...不再出现此类内容
编辑人员丨1周前
