-
基于卷积神经网络的"舌边白涎"舌象识别研究
编辑人员丨1周前
目的 通过机器学习分析"舌边白涎"舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能.方法 使用Python进行图像预处理,搭建用于舌象识别的视觉几何组 16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对"舌边白涎"舌象鉴别分析的效果,并结合热力图分析"舌边白涎"典型舌象表现.结果 基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16 及残差网络 50 层(residual network 50,ResNet50)模型验证准确率均较高,达到 80%以上,且ResNet50 模型优于VGG16 模型,可为舌象识别提供一定参考.基于加权梯度类激活映射(gradient-weighted class activa-tion mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析.结论 基于卷积神经网络模型对舌象数据库进行分析,实现"舌边白涎"舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴.
...不再出现此类内容
编辑人员丨1周前
-
用于BI-RADS 4类肿块动态超声诊断的人工智能新模型
编辑人员丨1周前
目的:探究一种融合了SAM-YOLOV 5深度学习网络和图像处理技术的人工智能(AI)新模型在乳腺影像报告与数据系统(BI-RADS)4类肿块超声动态视频良恶性分类中的应用。方法:回顾性收集2019年5月至2023年6月汕头大学医学院第一附属医院经病理证实的BI-RADS 4类的乳腺肿块患者458例(530个肿块),按7∶3的比例进行模型的训练和测试,分析模型的ROC曲线下面积(AUC)、敏感性、特异性、阳性预测值、阴性预测值。先与单张静态图像下的测试效果进行比较,再与3个传统的深度学习网络以及高、低年资医师组的测试效果进行比较。分析新模型在BI-RADS 4a、4b、4c类肿块中的诊断效能。结果:二维超声动态视频在新模型中测试所得到的AUC、敏感性、特异性、阳性预测值、阴性预测值高于使用单张超声静态图像(均 P<0.05)。基于二维超声动态视频下,新模型的AUC、敏感性、特异性、阳性预测值、阴性预测值高于3个深度学习网络模型(YOLOV 5、VGG 16、Resnet 50)和低年资医师组(均 P<0.05),低于高年资医师组(其中仅特异性、阴性预测值 P<0.05)。新模型对BI-RADS 4b类肿块诊断效能最低。 结论:基于SAM-YOLOV 5深度学习网络和图像处理技术开发的用于BI-RADS 4类乳腺肿块动态超声分类诊断的新模型有较高的诊断价值,有望用于辅助临床诊断。
...不再出现此类内容
编辑人员丨1周前
-
基于深层卷积神经网络近视性黄斑病变筛查系统的研究
编辑人员丨1周前
目的:研究一种基于深层卷积神经网络(DCNN)全自动近视性黄斑病变(MMD)筛查及其严重程度评估系统。方法:收集安徽省第二人民医院6 068张眼底图像构建训练集,并选取公开的眼底图像数据集构建测试集。对眼底图像进行预处理及扩增、MMD病变等级标注、数据清洗。构建全自动MMD筛查系统,该系统由两级网络结构组成,第一级网络结构用于识别MMD是否存在,第二级网络结构用于判断MMD病变的严重等级。比较VGG-16、ResNet50、Inception-v3和Densenet这4种常用的DCNN方法在MMD筛查及严重程度识别任务中的准确率、特异性、敏感度、精确率、F1值、曲线下面积(AUC)、Kappa系数性能。结果:Densenet网络模型在MMD筛查任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.898、0.918、0.919、0.908和0.962。Inception-v3网络模型在MMD严重程度识别任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.839、0.952、0.952、0.892和0.965。可视化结果显示,本研究所采用的网络结构模型可自动学习MMD严重等级判断的临床特征,准确识别弥漫性和局灶性脉络膜萎缩区域。结论:基于DCNN的眼底图像MMD筛查方法可自动化提取MMD的有效特征,并准确进行MMD筛查及其严重等级判断,可有效辅助临床。
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习的七类病毒电镜图像自动识别
编辑人员丨1周前
目的:应用深度学习进行病毒电镜图像的分类,通过多种模型性能的比较,提供适用于病毒电镜图像分类的网络模型,提供病毒电镜图像识别的辅助与支持,减少研究人员的劳动强度和分析时间。方法:通过加深网络深度、调整学习率和批量大小等参数,使用AlexNet、VGG、ResNet、DenseNet、SqueezeNet、MobileNet、ShuffleNet多种经典的卷积神经网络对七种病毒电镜图像进行分类。结果:DenseNet169以91.9%的准确率、90.1%的敏感度和98.6%的特异度取得了模型最佳性能。其中,模型对细小病毒的识别效果最好,乳头瘤病毒、疱疹病毒、痘病毒和轮状病毒的精确率、敏感度、特异度和F1值均在90%以上,甚至接近100%。同时,轻量级网络ShuffleNet的性能以更少的参数量和浮点次数超越了深度网络AlexNet和VGG,并能够以比ResNet少约15倍的参数量和90余倍的浮点运算次数取得与之相当的结果;与DenseNet相比,孙世丁通过牺牲可接受范围内的识别性能换取了比其少约10倍的参数量和80余倍的浮点运算次数。结论:深度网络DenseNet169能够以最佳性能实现病毒电镜图像的自动识别,轻量网络ShuffleNet_v2_x0_5能够以更少的参数量和浮点运算次数实现次优性能,在实际应用中可结合具体情况在深度网络和轻量级网络之间进行取舍。
...不再出现此类内容
编辑人员丨1周前
-
基于AS-OCT图像的核性白内障多级排序分类算法研究
编辑人员丨1周前
目的:探讨基于眼前节光学相干断层扫描(AS-OCT)图像的核性白内障智能辅助分级算法对白内障分级的诊断价值。方法:采用诊断试验研究方法,收集2020年11月至2021年9月间同济大学附属第十人民医院电子病例系统中核性白内障患者939例1 608眼的AS-OCT图像资料,所有资料均符合临床阅片清晰度要求。其中男398例664眼,女541例944眼,年龄18~94岁,平均年龄(65.7±18.6)岁。由3名经验丰富的临床医生基于晶状体混浊分类系统(LOCS Ⅲ分级系统),对所收集的AS-OCT图像进行1~6级人工标注。构建一种基于多级排序的全局-局部白内障分级算法,该算法包含5个基本的二元分类全局-局部网络(GL-Net),每个GL-Net聚合白内障核区域、原始图像等多尺度信息进行核性白内障分级。基于消融实验和模型对比试验,采用准确率、精确率、灵敏度、F1指标及Kappa系数对模型性能进行评价,且所有结果均通过五折交叉验证。结果:模型在核性白内障数据集上的准确率、精确率、灵敏度、F1、Kappa分别为87.81%、88.88%、88.33%、88.51%、85.22%。消融实验结果表明,ResNet18结合局部特征和全局特征进行多级排序分类,模型在准确率、精确率、灵敏度、F1、Kappa指标上均有提升。与ResNet34、VGG16、Ranking-CNN、MRF-Net模型比较,本研究模型各性能指标均有提升。结论:基于深度学习的AS-OCT核性白内障图像多级排序分类算法对白内障分级具有较高的准确度,有望辅助提高眼科医生对核性白内障的诊断精度以及效率。
...不再出现此类内容
编辑人员丨1周前
-
基于心音信号的常见先天性心脏病智能诊断算法研究
编辑人员丨1周前
目的:对室间隔缺损、房间隔缺损、动脉导管未闭和卵圆孔未闭合并肺动脉高压4种常见先天性心脏病(简称先心病)心音信号进行分析,提出一种基于深度学习的智能听诊算法,实现心音信号的自动分类。方法:基于数字信号处理技术,将一维时序信号分类问题转换为二维图像分类问题,利用深度神经网络实现心音的自动分类。采用该算法对浙江大学医学院附属儿童医院采集的941例心音数据进行训练、验证和测试,按照8∶1∶1的比例分为训练集、验证集和测试集。此外,本研究还收集了107例基于临床筛查环境的心音数据,用于验证智能听诊算法在实际临床应用中的效果。结果:本文采用离散小波变换法对心音信号进行降噪处理,观察到降噪处理对模型性能的显著改善。与未经降噪处理的模型相比,经过降噪处理的模型在测试集上的准确率、灵敏度、特异度和F1分数分别提高了15.8%、32.6%、11.1%和27.3%。比较5种通用分类神经网络模型(Swin_transform、Vit、Mobilenet、Resenet和Vgg)的性能,F1分数分别为0.905、0.842、0.687、0.814和0.864。使用Swin_transform模型对107例外部数据集进行测试,得到0.833的准确率、0.872的灵敏度和0.801的特异度。结论:先心病心音信号的自动分类模型性能受噪声与神经网络结构的影响较大。通过应用离散小波变换法对心音信号进行降噪处理,模型性能显著改善。比较多种通用分类神经网络模型发现Swin_transform模型展现出了最佳的分类性能。智能听诊算法在实际临床应用中有良好的有效性、准确率、灵敏度和特异度。基于深度学习的智能听诊算法在先心病心音信号自动分类方面具有潜在应用价值。
...不再出现此类内容
编辑人员丨1周前
-
构建基于ResNet-18的1型发作性睡病猝倒面容预测模型
编辑人员丨1周前
目的:应用深度学习图像识别网络ResNet-18,基于临床拍摄视频,建立猝倒面容预测模型。方法:本研究为横断面研究,收集2020至2023年在南昌大学第二附属医院首诊未经治疗的1型发作性睡病患者25例及健康对照25名,采集的图像预处理后,共获得1 180张图片,其中583张猝倒面容,597张正常面容。从中抽取90%作为训练集与验证集,随后数据扩增5倍,扩充后的数据集抽取80%作为训练集,20%作为验证集,即训练集数量为(583+597)×0.9×0.8×5=4 248,验证集数量为(583+597)×0.9×0.2×5=1 062,训练集与验证集用于训练参数建立模型,并通过五折交叉验证法进行训练,构建采用迁移学习方式的ResNet-18猝倒面容识别模型。原未扩增前图像抽取10%(118张)作为测试集,测试集数据不参与数据增强和模型训练,仅用于测试模型最终效果。最后将ResNet-18与VGG-16、ResNet-34和Inception V3深度学习模型进行比较,用受试者工作特征曲线评估ResNet-18图像识别网络在猝倒面容识别中的价值。结果:25例1型发作性睡病患者中,男15例,女10例,年龄[ M( Q1,Q3)]为14.0(11.0,20.5)岁;25名健康对照者中,男14名,女11名,年龄16.0(14.4,23.0)岁。ResNet-18图像识别网络在测试集中的总体准确率为90.9%,灵敏度为96.4%,特异度为85.2%,受试者工作特征曲线下面积为0.99(95% CI:0.96~1.00)。ResNet-18模型参数量为11.69 M,浮点运算量为1 824.03 M,单张图片识别时间为5.9 ms。 结论:基于深度学习图像识别网络ResNet-18构建的猝倒面容预测模型在猝倒面容的识别上有较高的准确率。
...不再出现此类内容
编辑人员丨1周前
-
基于ResNet50-OC模型的彩色眼底照片质量多分类方法效果评估
编辑人员丨1周前
目的:对基于深度学习的ResNet50-OC模型彩色眼底照片质量多分类的效果进行评估。方法:纳入2018年7月在南京医科大学附属明基医院收集的彩色眼底照片PD数据集及EyePACS数据集,临床医师根据眼底图像的成像质量将其大致分为质量较好、曝光不足、曝光过度、边缘模糊和镜头反光5类。在训练集中,每个类别包含1 000张图像,其中800张选自EyePACS数据集,200张选自PD数据集;在测试集中,每个类别包含500张图像,其中400张选自EyePACS数据集,100张选自PD数据集。训练集总计5 000张图像,测试集总计2 500张图像。对图像进行归一化处理和数据扩增。采用迁移学习方法初始化网络模型的参数,在此基础上对比当前深度学习主流分类网络VGG、Inception-resnet-v2、ResNet和DenseNet,选取准确率和Micro F1值最优的网络ResNet50作为分类模型的主网络。在ResNet50训练过程中引入One-Cycle策略加快模型收敛速度,得到最优模型ResNet50-OC并将其应用于眼底照片质量多分类,评估ResNet50与ResNet50-OC对眼底照片进行多分类的准确率和Micro F1值。结果:ResNet50对彩色眼底照片质量多分类准确率和Micro F1值明显高于VGG、Inception-resnet-v2、ResNet34和DenseNet。ResNet50-OC模型训练15轮对眼底图像质量多分类准确率为98.77%,高于ResNet50训练50轮的98.76%;ResNet50-OC模型训练15轮对眼底图像质量多分类的Micro F1值为98.78%,与ResNet50训练50轮的Micro F1值相同。结论:ResNet50-OC模型可以准确、有效地对彩色眼底照片质量进行多分类,One-Cycle策略可减少训练次数,提高分类效率。
...不再出现此类内容
编辑人员丨1周前
-
监测上消化道盲区智能内镜影像分析系统的构建及验证
编辑人员丨1周前
目的:构建监测上消化道盲区的智能内镜影像分析系统,并验证其监测性能。方法:回顾性收集武汉大学人民医院消化内镜中心2016—2020年的上消化道内镜图片87 167张(数据集1),其中训练集75 551张,测试集11 616张;回顾性收集来自武汉大学人民医院消化内镜中心2016—2020年的咽部图片2 414张(数据集2),其中训练集2 233张,测试集181张。分别构建上消化道盲区监测27分类模型(模型1,区分图像为咽部、食管、胃腔等27个解剖学部位)、咽部盲区监测5分类模型(模型2,区分上颚、咽后壁、喉部、左梨状窝、右梨状窝)。基于数据集1、2对上述模型进行训练和图片测试,基于keras框架的EfficientNet-B4、ResNet50、VGG16模型进行训练。进一步回顾性收集来自武汉大学人民医院消化内镜中心2021年的完整上消化道内镜检查视频30个,在视频中测试模型2盲区监测性能。结果:模型1在图片中识别上消化道27个解剖学部位准确率的横向对比结果显示,EfficientNet-B4、ResNet50、VGG16在上消化道盲区监测27分类模型的平均准确率分别为90.90%、90.24%、89.22%,其中EfficientNet-B4模型的表现最优,EfficientNet-B4模型各个部位监测的准确率介于80.49%~97.80%。模型2在图片中识别咽部5个解剖学部位准确率的横向对比结果显示,EfficientNet-B4、ResNet50、VGG16在咽部盲区监测5分类模型的平均准确率分别为99.40%、98.56%、97.01%,其中EfficientNet-B4模型的表现最优,其各个部位监测的准确率介于96.15%~100.00%;模型2在视频中识别咽部5个解剖学部位的总体准确率为97.33%(146/150)。结论:基于深度学习构建的可监测上消化道盲区的智能内镜影像分析系统,耦合了咽部盲区监测及食管、胃腔、十二指肠盲区监测功能,在静止图像及视频中均具有较高识别准确率,有望应用于临床辅助医生实现上消化道视野全覆盖。
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习联合分割模型对扩张型心肌病心肌纤维化的定量分析
编辑人员丨1周前
目的:探讨基于深度学习的心肌-纤维化区域联合分割模型对扩张型心肌病(DCM)患者心肌纤维化定量分析的效果。方法:回顾性分析徐州市中心医院2015年1月至2022年4月确诊为DCM,并接受心脏MR-钆延迟强化检查显示左心室心肌纤维化的200例患者资料,分为训练集120例、验证集30例、测试集50例。由影像科医师勾勒左心室心肌轮廓和选取正常心肌区域,应用标准差法(SD)计算阈值提取纤维化心肌,作为左心室分割和纤维化量化的参考标准。通过凸形先验的U-Net网络分割左心室心肌,然后应用VGG图像分类网络识别正常心肌图像块,计算SD阈值提取纤维化心肌。采用精确度、召回率、交并比和Dice系数评价心肌分割效果。采用组内相关系数(ICC)评价深度学习联合分割模型与手动提取测得的左心室心肌纤维化比率的一致性。根据纤维化比率中位数,将测试集样本分为轻度组和重度组,通过Mann-Whitney U检验比较纤维化量化效果差异。 结果:在测试集中,心肌分割精确度为0.827(0.799,0.854),召回率为0.849(0.822,0.876),交并比为0.788(0.760,0.816),Dice系数为0.832(0.807,0.857)。联合分割模型与手动提取的纤维化比率的一致性高(ICC =0.991, P<0.001)。轻度和重度纤维化比率的误差率差异无统计学意义( P>0.05)。 结论:该联合分割模型实现了左心室心肌纤维化比率的自动计算,与医师手动提取结果一致性高,能够较为精准地实现DCM患者的心肌纤维化自动定量分析。
...不再出现此类内容
编辑人员丨1周前
