-
人工智能辅助肺磨玻璃结节性质及病理成份的临床应用研究
编辑人员丨2天前
目的 研究人工智能医学影像辅助诊断系统对肺磨玻璃结节(GGN)良恶性及判断病理成份的临床应用价值.方法 从行胸部CT检查发现GGN的患者中随机选取符合条件的44例纳入研究.根据病理结果分成腺癌组GGN与炎性病变组GGN,然后根据贴壁成份的占比不同将腺癌组GGN分成高占比组和低占比组,记录2组测量参数(包括病灶长径、平均CT值、CT值标准差、紧凑度、球形度及患者年龄).采用SPSS 20.0软件统计分析2组间差异,对有统计学意义的定量参数进行受试者工作特征曲线(ROC)分析,评价各测量参数鉴别良恶性GGN及判断恶性GGN病理成分的能力,同时根据最大约登指数(YI)计算该测量参数的最佳诊断阈值,获得曲线下面积(AUC)、敏感度和特异度,P<0.05被认为差异具有统计学意义;最后根据二元Logistic回归模型得出鉴别良恶性GGN及判断恶性GGN组织成分的独立危险因素.结果 ①在腺癌组GGN与炎性病变组GGN测量数据对比中,腺癌组GGN病灶长径、平均CT值、CT值标准差大于炎性病变组GGN(P<0.05),腺癌组GGN紧凑度、球形度均小于炎性病变组GGN(P<0.05),而2组GGN患者年龄差异无统计学意义(P>0.05).②在高占比腺癌组GGN和低占比腺癌组GGN测量数据对比中,仅发现高占比腺癌组GGN平均CT值小于低占比腺癌组GGN(P<0.05),其他无差异.③二元Logistic回归模型分析显示,鉴别腺癌GGN与炎症GGN的独立因素为病灶长径;鉴别高占比腺癌GGN和低占比腺癌GGN的独立因素为平均CT值.结论 基于人工智能医学影像辅助诊断系统CT特征定量分析有助于鉴别良恶性GGN,以各项指标联合诊断的效能最佳;但在判断恶性GGN的病理成份方面能力有限,但仍需结合临床其他各项指标进行综合判断才能做出更准确的诊断.人工智能医学影像辅助诊断系统对GGN良恶性及判断病理成份有较大的临床应用价值,以各项指标联合诊断的效能最佳.
...不再出现此类内容
编辑人员丨2天前
-
肩关节加速MRI应用深度学习重建算法的可行性与临床价值
编辑人员丨2天前
目的 探讨深度学习重建算法(DLR)在肩关节MRI中提高图像质量和缩短扫描时间的可行性与临床价值.方法 前瞻性纳入2023年6月至10月期间在南京医科大学第四附属医院的50例疑似患有肩关节病变的患者,采用1.5T MRI行常规序列扫描图像为Fsecon组,使用并行采集加速因子2的扫描图像为Fsefast组,扫描序列包括脂肪抑制质子加权像(PDWI-FS)和T1加权像(T1WI),将Fsefast组传至Subtle MRTMdlr后获得图像Fsedlr组.测量三组图像中的冈上肌、肱二头肌长头肌腱、盂唇软骨、肱骨骨髓的信号噪声比(SNR)及冈上肌/盂唇软骨的对比噪声比(CNR)并进行比较,两名放射科医师双盲采用Likert 4分法分别对Fsedl,组与Fsecon组的图像清晰度和伪影进行主观评价,并对这两组的病理异常结构进行诊断效能对比.结果 相对于Fsecon组,Fsedlr组扫描时间缩短了 44%,且图像清晰度评分、伪影评分均增高,差异有统计学意义(P<0.05),两名医师主观评分组内相关性系数为0.797~0.919.客观评价指标中,Fsedlr组的SNR和CNR均明显高于Fsecon组与Fsefast组,差异均有统计学意义(P<0.05).在两位医师对Fsecon组与FSEdlr组病理异常结构的评估中,两组的诊断结果均有较好的一致性(Kappa值:0.675~1.000),在同一名医师的评估中也显示出极好的一致性(Kappa值:0.771~1.000),其中肱骨骨髓、关节滑囊、肱二头肌长头肌腱的Kappa值均高于0.8.结论 将DLR算法应用于肩关节MRI检查中,能够提高图像质量、缩短图像采集时间,并保证诊断效能,提高检查效率,具有较好的临床价值.
...不再出现此类内容
编辑人员丨2天前
-
CT纹理分析联合机器学习对急性脑梗死出血性转化的预测价值分析
编辑人员丨2天前
目的 探究CT纹理分析联合机器学习对急性脑梗死后出血性转化的预测价值.方法 回顾性分析2021年1月至2023年9月入院治疗的急性脑梗死患者的CT图像资料,比较溶栓治疗后发生出血性转化组(n=78)和未出血组(n=122)之间CT梗死区形态参数的差异,在CT图像上提取梗死区域的纹理特征参数,分别基于纹理、形态特征构建多种机器学习模型,采用受试者工作特征(ROC)曲线及曲线下面积(AUC)评估模型的预测效能.结果 梗死部位梗死面积及是否为多发梗死灶等形态特征具有统计学意义(P<0.05);以纹理特征构建的机器学习模型能更好的预测出血性转化,整体效能高于形态特征模型,其中XGBoost和CatBoost预测效能最高.结论 基于CT纹理分析可有效预测急性脑梗死出血性转化.
...不再出现此类内容
编辑人员丨2天前
-
应用程序设计课程用于本科护生护理信息能力培养的实践
编辑人员丨2天前
目的 探讨基于项目管理内涵制定的应用程序设计课程用于建立本科护生护理信息能力的可行性,为护生相关能力培养提供参考.方法 成立培养团队,基于项目管理内涵制定课程材料,对 77名本科护生进行培养,每周 1次,每次 90 min,共 9 次.采用护理信息能力自评量表、学习动机策略问卷评估有用性,采用课程学习评价表、应用程序项目产出和报告评分表评估适用性.结果 培养后,护生在信息角色、基本计算机知识和技能、计算机应用能力和无线设备 4 个维度的得分显著提高(分别t=7.148,2.029,5.767,5.729 均P<0.05),自我效能感得分得到显著改善(t=2.944,P=0.004).学生共产出 9个应用程序项目,评分均在 85 分以上.在课程内容、知识、态度和专案管理方面的满意度均分为中上水平.结论 基于项目管理内涵制定的应用程序设计课程具有可行性和适用性,初步取得较好成效和较高满意度.可进一步合作开展随机对照组研究,以探讨长期效果.
...不再出现此类内容
编辑人员丨2天前
-
基于XGBoost机器学习算法的肺结节浸润性预测模型构建与验证:一项双中心研究
编辑人员丨2天前
目的 采用XGBoost机器学习算法构建一个临床影像模型,预测肺结节病理浸润性,并在一个外部验证组中对模型进行泛化性验证.方法 回顾性纳入CT诊断为孤立性肺结节患者248例,分别提取肺结节区域和结节周围3mm、5mm区域的放射组学特征.经过从粗到细的特征选择后,使用最小绝对收缩和选择算子(LASSO)方法计算Radscore.采用单因素和多因素Logistic回归分析筛选与肺结节浸润性相关的临床放射学因素.然后,利用Logistic和XGBoost算法构建临床-放射组学联合模型,在一个独立的外部验证组(n=147)中评估模型的泛化性能.结果 综合Radscore、CT值、肺结节长度、月牙征的临床放射学XGBoost联合模型对肺结节浸润性的预测效果优于放射组学模型、临床放射学Logistic联合模型,在训练队列中的曲线下面积AUC为0.889(95%CI,0.848~0.927),在外部验证组中曲线下面积AUC为0.889(95%CI,0.823~0.942).结论 我们采用XGBoost机器学习算法构建了一种预测肺结节浸润性的临床放射学模型,结果显示出令人满意的预测效能,并在一个独立外部验证组中得到了良好的泛化性验证,可以帮助临床医生指导肺结节的诊疗并制定评估策略.
...不再出现此类内容
编辑人员丨2天前
-
增强型动脉自旋标记成像在帕金森病脑灌注损伤中的应用研究
编辑人员丨2天前
目的:探讨磁共振增强型动脉自旋标记(eASL)技术对细化帕金森病(PD)患者脑血流灌注损伤的价值以及在PD患者与健康对照者(HC)中的分类效能.方法:前瞻性将2020年7月—2022年1月在本院就诊的34例PD患者及年龄、性别以及受教育年限相匹配的35例HCs纳入本研究.采用eASL和常规ASL技术对每例被试行颅脑MR灌注成像,并通过数据后处理获取eASL定量参数[校正脑血流量(CBF)、动脉通过时间(ATT)]和常规ASL定量参数(未校正CBF).采用双样本t检验比较各项灌注参数的组间差异,并应用Spearman相关分析对有显著差异脑区的灌注参数值与临床评分之间的相关性.进一步基于灌注参数构建机器学习模型,评估各分类模型对PD的诊断效能.结果:与未校正CBF相比,校正CBF能更为精准地检测出PD患者的运动相关责任脑区的灌注损伤,表现为PD患者右侧丘脑、双侧中央前回、左侧中央后回等脑区的CBF值增高以及右侧额中回的CBF值减低(FWE校正,P<0.001);而且,PD组左侧额中回的ATT值缩短(FWE校正,P<0.001).PD组左侧壳核、左侧中央前回及左侧中央后回的校正CBF值、左侧壳核的未校正CBF值均与运动功能评分呈显著正相关(P<0.05);右侧角回的校正CBF值、左侧额中回的ATT值均与认知功能评分呈正相关(P<0.05).未校正CBF模型在区分PD患者与HC受试者中的曲线下面积(AUC)为0.82,校正CBF模型的AUC为0.85,基于eASL的多参数联合模型的AUC为0.87.Delong检验显示联合模型的诊断效能优于未校正CBF模型(P<0.05).结论:eASL技术能够准确显示PD患者灌注损伤脑区,并可反映脑组织ATT的异常改变,多灌注参数的结合能具有较好地PD分类诊断效能,从而为PD的临床诊断提供了一定的支撑依据.
...不再出现此类内容
编辑人员丨2天前
-
深度学习重建算法对肾上腺肿瘤的检出及鉴别效能的影响
编辑人员丨2天前
目的:探讨不同等级深度学习图像重建(DLIR)算法对肾上腺肿瘤的检出、组学特征可重复性和组学模型鉴别肿瘤类型效能的影响.方法:回顾性收集41例肾上腺功能性腺瘤(FAA)和46例肾上腺转移瘤(AM)患者的临床和影像资料.CT增强扫描完成后,对静脉期的原始数据采用4种强度等级(DL1、DL2、DL3、DL4)的DLIR算法进行重建.首先采用主、客观指标比较4种等级间图像质量的差异;然后使用Research Portal V1.1科研平台对各组重建图像上肾上腺肿瘤进行分割并提取450个影像组学特征,包括原始图像特征90个和拉普拉斯(LoG)滤波后的高阶特征(高斯核:0.5、1.0、1.5、2.0)360个.采用一致性相关系数(CCC)评估采用不同图像重建等级测量的FAA和AM组学特征的可重复性.最后,在各组重建图像中采用逐步特征选择策略,筛选出最优特征集并构建鉴别FAA和AM的组学模型.利用五折交叉验证法验证4个组学模型的鉴别效能,利用分层交叉验证法测评4个模型的泛化能力.结果:DL2和DL3在肾显示上腺肿瘤的清晰度方面最优,得分为4(4,5),优于DL1相应得分4(3,5)和DL4相应得分4(3,4),且差异具有统计学意义(F=139.045,P<0.05).随着DLIR降噪等级的提升,原始特征CCC值>0.85的个数逐渐减少,DL4中FAA和AM特征可重复的比例仅占39.3%(21/90)和50.9%(29/90).组学特征经过LoG滤波(高斯核2.0)处理后,CCC值>0.85的个数增加,DL4中FAA和AM特征可重复的比例占91.1%(82/90)和93.3%(84/90).4个组学模型在测试集中的曲线下面积(AUC)和符合率均>0.75,DeLong检验显示AUC的差异无统计学意义(Z=0.177~1.284,P=0.199~0.859).但分层交叉验证显示,DL4重建图像的泛化能力最弱,AUC和符合率均<0.75.结论:高降噪等级的DLIR算法会降低对肾上腺肿瘤显示的清晰度以及组学模型的泛化性.虽然LoG滤波器(高斯核:2.0)有助于提升组学特征测量的可重复性,但仍建议在肾上腺影像诊断和组学模型训练时,使用中低降噪等级的DLIR图像.
...不再出现此类内容
编辑人员丨2天前
-
可视化影像决策模型在评估肺结节浸润程度中的价值
编辑人员丨2天前
目的:探讨基于临床资料、影像征象和影像组学特征构建的联合模型在术前对肺结节浸润程度的预测价值,并通过决策热图及Shapley算法对模型进行可视化分析.方法:回顾性搜集2018年1月—2022年3月在本院经病理确诊的179例肺结节患者的临床资料和术前CT图像(肺窗平扫).根据肺肿瘤新分类,分为腺体前驱病变组(78例)和浸润性肺腺癌组(101例).采用Deepwise软件,分别提取瘤灶、瘤周3 mm和5 mm区域的影像组学特征.使用单因素分析、相关性分析、Boruta算法和逐步logistic回归分析等特征筛选算法确定各区域的最佳组学特征,然后采用logistics方法分别构建3个单区域及2个多区域(肿瘤+瘤周3 mm及肿瘤+瘤周5 mm)共5个影像组学模型,分析各模型的预测效能并计算其影像组学评分(Radsocre).通过单因素和多因素logistic回归方法筛选相关临床指标和结节的主要CT征象,并采用XGBoost算法将筛选出的高危因素结合瘤灶+瘤周3 mm联合模型的影像组学得分构建临床影像联合模型.额外收集浙江省嘉兴市中医医院经病理证实的69例肺结节患者的临床和CT资料来完成联合模型的泛化性验证.利用决策热图和Shapley算法对模型分别进行可视化和特征贡献度分析.结果:相比单区域影像组学模型(训练集:AUC=0.740、0753、0.768;验证集:AUC=0.841、0.856、0.809),多区域影像组学模型在两个数据集中均显示出更高的预测效能(AUC=0.878和0.834).XGBoost联合模型的预测效能得到进一步地提高(AUC=0.948和0.886).Shap-ley分析显示影像组学得分、CT值和结节长度为预测肺结节浸润程度的最重要的3个特征.决策热图算法实现了对浸润性预测推演过程的可视化.结论:XGBoost模型对肺结节浸润性的评估具有较高的准确性和泛化性.决策热图实现了可解释机器学习算法的可视化从而保障了模型的实用性,为肺结节的临床处理及管理提供了一种无创性的辅助诊断工具.
...不再出现此类内容
编辑人员丨2天前
-
列线图与机器学习算法预测中老年龋齿的比较研究
编辑人员丨2天前
目的 对比列线图与不同机器学习算法构建中老年人龋齿预测模型的效能.方法 采用多阶段分层随机抽样法,选取南宁市、贵港市、崇左市510名中老年人为研究对象,进行问卷调查及口腔检查.采用单因素分析和Lasso回归筛选相关变量,使用多因素logistic回归分析确定最终独立影响因素.基于显著特征,建立列线图预测模型,并运用线性判别分析(LDA)、偏最小二乘算法(PLS)、距离多普勒算法(RDA)、广义线性模型(GLM)、随机森林(RF)、支持向量机(SVM)核函数(SVM-Radial)及SVM线性核函数(SVM-Linear)7种机器学习算法构建7种龋齿风险预测模型.采用受试者工作特征(ROC)曲线下面积(AUC)中位数评价各模型预测性能,以及不同变量筛选方法所构建模型的预测性能.结果 中老年人龋齿检出率为71.18%.经过特征筛选后最终保留5个预测因子,分别是年龄(OR=0.945,95%CI:0.917~0.973)、刷牙频率(OR=0.688,95%CI:0.475~0.997)、过去1年是否洗牙(OR=0.303,95%CI:0.103~0.890)、牙存留数(OR=1.062,95%CI:1.038~1.087)和口腔健康评估量表(OHAT)得分(OR=1.363,95%CI:1.234~1.505).各模型对比结果显示,RF算法所构建的预测模型表现最佳,AUC中位数为0.747,其次为列线图,AUC中位数为0.733.单因素+Lasso+多因素logistic(简称Lasso+logistic)筛选自变量构建预测模型的AUC中位数均高于RF算法筛选自变量构建的预测模型.结论 基于Lasso+logistic筛选变量,RF较列线图及其他机器学习算法在中老年龋齿预测中提供了更可靠的预测性能.
...不再出现此类内容
编辑人员丨2天前
-
人工智能在胸部骨折CT诊断中的应用
编辑人员丨2天前
目的 探讨人工智能骨疾病诊断系统(AI)在胸部骨折中的诊断效能及应用价值.方法 回顾性分析深圳大学总医院因创伤急诊就诊行胸部CT并经3~6周复查胸部CT证实的726例胸部骨折,计算AI和两名放射科医师以及放射科医师在A1辅助下对胸部骨折诊断的召回率、精确率和F1分数.结果 AI检测肋骨骨折的召回率和F1分数分别为0.91和0.92,均高于放射科医师1(0.77与0.85)和放射科医师2(0.84与0.90),AI的精确率(0.92)低于放射科医师1(0.95)和放射科医师2(0.96).放射科医师1和2在AI辅助下肋骨骨折检测的召回率、精确率和F1分数分别为0.94、0.95、0.94和0.97、0.98、0.97.AI检测胸部其他骨折的召回率和F1分数(0.90与0.90)高于放射科医师1(0.62与0.74)和放射科医师2(0.73与0.81),放射科医师1和2在AI辅助下,胸部其他骨折检测的召回率、精确率和F1分数分别为0.94、0.95、0.94和0.97、0.97、0.97.结论 AI能高效高敏感地检测急诊创伤患者胸部CT中的胸部骨折,有望优化急诊创伤患者的诊疗流程.
...不再出现此类内容
编辑人员丨2天前
