-
CT纹理分析联合机器学习对急性脑梗死出血性转化的预测价值分析
编辑人员丨6天前
目的 探究CT纹理分析联合机器学习对急性脑梗死后出血性转化的预测价值.方法 回顾性分析2021年1月至2023年9月入院治疗的急性脑梗死患者的CT图像资料,比较溶栓治疗后发生出血性转化组(n=78)和未出血组(n=122)之间CT梗死区形态参数的差异,在CT图像上提取梗死区域的纹理特征参数,分别基于纹理、形态特征构建多种机器学习模型,采用受试者工作特征(ROC)曲线及曲线下面积(AUC)评估模型的预测效能.结果 梗死部位梗死面积及是否为多发梗死灶等形态特征具有统计学意义(P<0.05);以纹理特征构建的机器学习模型能更好的预测出血性转化,整体效能高于形态特征模型,其中XGBoost和CatBoost预测效能最高.结论 基于CT纹理分析可有效预测急性脑梗死出血性转化.
...不再出现此类内容
编辑人员丨6天前
-
基于XGBoost机器学习算法的肺结节浸润性预测模型构建与验证:一项双中心研究
编辑人员丨6天前
目的 采用XGBoost机器学习算法构建一个临床影像模型,预测肺结节病理浸润性,并在一个外部验证组中对模型进行泛化性验证.方法 回顾性纳入CT诊断为孤立性肺结节患者248例,分别提取肺结节区域和结节周围3mm、5mm区域的放射组学特征.经过从粗到细的特征选择后,使用最小绝对收缩和选择算子(LASSO)方法计算Radscore.采用单因素和多因素Logistic回归分析筛选与肺结节浸润性相关的临床放射学因素.然后,利用Logistic和XGBoost算法构建临床-放射组学联合模型,在一个独立的外部验证组(n=147)中评估模型的泛化性能.结果 综合Radscore、CT值、肺结节长度、月牙征的临床放射学XGBoost联合模型对肺结节浸润性的预测效果优于放射组学模型、临床放射学Logistic联合模型,在训练队列中的曲线下面积AUC为0.889(95%CI,0.848~0.927),在外部验证组中曲线下面积AUC为0.889(95%CI,0.823~0.942).结论 我们采用XGBoost机器学习算法构建了一种预测肺结节浸润性的临床放射学模型,结果显示出令人满意的预测效能,并在一个独立外部验证组中得到了良好的泛化性验证,可以帮助临床医生指导肺结节的诊疗并制定评估策略.
...不再出现此类内容
编辑人员丨6天前
-
可视化影像决策模型在评估肺结节浸润程度中的价值
编辑人员丨6天前
目的:探讨基于临床资料、影像征象和影像组学特征构建的联合模型在术前对肺结节浸润程度的预测价值,并通过决策热图及Shapley算法对模型进行可视化分析.方法:回顾性搜集2018年1月—2022年3月在本院经病理确诊的179例肺结节患者的临床资料和术前CT图像(肺窗平扫).根据肺肿瘤新分类,分为腺体前驱病变组(78例)和浸润性肺腺癌组(101例).采用Deepwise软件,分别提取瘤灶、瘤周3 mm和5 mm区域的影像组学特征.使用单因素分析、相关性分析、Boruta算法和逐步logistic回归分析等特征筛选算法确定各区域的最佳组学特征,然后采用logistics方法分别构建3个单区域及2个多区域(肿瘤+瘤周3 mm及肿瘤+瘤周5 mm)共5个影像组学模型,分析各模型的预测效能并计算其影像组学评分(Radsocre).通过单因素和多因素logistic回归方法筛选相关临床指标和结节的主要CT征象,并采用XGBoost算法将筛选出的高危因素结合瘤灶+瘤周3 mm联合模型的影像组学得分构建临床影像联合模型.额外收集浙江省嘉兴市中医医院经病理证实的69例肺结节患者的临床和CT资料来完成联合模型的泛化性验证.利用决策热图和Shapley算法对模型分别进行可视化和特征贡献度分析.结果:相比单区域影像组学模型(训练集:AUC=0.740、0753、0.768;验证集:AUC=0.841、0.856、0.809),多区域影像组学模型在两个数据集中均显示出更高的预测效能(AUC=0.878和0.834).XGBoost联合模型的预测效能得到进一步地提高(AUC=0.948和0.886).Shap-ley分析显示影像组学得分、CT值和结节长度为预测肺结节浸润程度的最重要的3个特征.决策热图算法实现了对浸润性预测推演过程的可视化.结论:XGBoost模型对肺结节浸润性的评估具有较高的准确性和泛化性.决策热图实现了可解释机器学习算法的可视化从而保障了模型的实用性,为肺结节的临床处理及管理提供了一种无创性的辅助诊断工具.
...不再出现此类内容
编辑人员丨6天前
-
Logistic回归模型和XGBoost模型对急性缺血性脑卒中患者发生吞咽障碍的预测价值
编辑人员丨6天前
目的 筛选危险因素构建急性缺血性脑卒中后吞咽障碍风险预测模型,对比XGBoost模型和Logistic回归模型的优劣性.方法 选取2022年1-12月新疆医科大学第二附属医院神经内科573例急性缺血性脑卒中患者,按7∶3比例随机分为建模组(n=401)和验证组(n=172).筛选发生吞咽障碍的危险因素,以单因素分析有统计学意义的变量分别建立Logistic回归模型和XGBoost模型.在验证组数据集上使用十折交叉验证法进行内部验证,采用校准曲线、受试者工作特征曲线(ROC曲线)和决策曲线评价两种模型的预测效能.结果 多因素Logistic回归分析结果显示,年龄、NIHSS评分、GCS评分、BI指数、脑干病变、构音障碍、失语症、咽反射(正常)是急性缺血性脑卒中后吞咽障碍的影响因素.XGBoost模型特征重要性排序前8位分别为年龄、BI指数、NIHSS评分、咽反射、TOAST分型、白蛋白、文化程度、营养评分.对比两种模型结果显示,XGBoost模型的准确性、精确度、敏感度、F1分值分别为0.849、0.830、0.754、0.790,表现优于Logistic回归模型.Logistic回归、XGBoost模型预测吞咽障碍的AUC值分别是0.894、0.925,两者AUC值比较,差异无统计学意义(P>0.05).模型的校准曲线和临床决策曲线均显示XG-Boost 模型准确度和临床实用价值优于Logistic回归模型.结论 XGBoost模型和Logistic回归模型均能有效预测急性缺血性脑卒中后吞咽障碍风险,XGBoost模型表现更优,可为临床早期预防急性缺血性脑卒中吞咽障碍提供参考.
...不再出现此类内容
编辑人员丨6天前
-
基于静脉期增强CT影像组学的机器学习模型术前预测局部进展期胃癌脉管侵犯
编辑人员丨6天前
目的:评估基于静脉期增强CT影像组学特征的机器学习模型术前预测局部进展期胃癌脉管侵犯(VI)的价值。方法:回顾性分析2011年7月至2020年12月郑州大学第一附属医院经病理证实的296例局部进展期胃癌患者,VI阳性213例、阴性83例,采用分层抽样方法按7∶3的比例将数据分为训练集(207例)和测试集(89例)。记录患者临床特征,采用多因素logistic回归筛选胃癌VI的独立危险因素。利用Pyradiomics软件提取肿瘤静脉期CT影像组学特征,采用最小绝对收缩和选择算法(LASSO)进行特征筛选,得到最优特征子集,建立影像组学标签。使用极端梯度提升(XGBoost)、逻辑回归(logistic)、朴素贝叶斯(GNB)和支持向量机(SVM)4种机器学习算法,对影像组学标签和筛选出的临床独立危险因素构建预测模型。采用受试者操作特征曲线评估模型预测胃癌VI的效能。结果:分化程度(OR=13.651,95%CI 7.265~25.650, P=0.003)、Lauren分型(OR=1.349,95%CI 1.011~1.799, P=0.042)和CA199(OR=1.796,95%CI 1.406~2.186, P=0.044)是预测局部进展期胃癌VI的独立危险因素。基于静脉期增强CT图像提取了864个影像组学特征,经LASSO筛选出18个最优特征构建组学标签。训练集中,XGBoost、logistic、GNB和SVM模型预测胃癌VI的曲线下面积(AUC)分别为0.914(95%CI 0.875~0.953)、0.897(95%CI 0.853~0.940)、0.880(95%CI 0.832~0.928)和0.814(95%CI 0.755~0.873),测试集中分别是0.870(95%CI 0.769~0.971)、0.877(95%CI 0.788~0.964)、0.859(95%CI 0.755~0.961)和0.773(95%CI 0.647~0.898)。logistic模型在测试集中AUC最大且稳定性高。 结论:基于静脉期增强CT影像组学特征的机器学习模型术前预测局部进展期胃癌VI均具有较高的效能,其中logistic模型的诊断效能最佳。
...不再出现此类内容
编辑人员丨6天前
-
PET影像组学特征多参数模型对≥60岁弥漫性大B细胞淋巴瘤患者生存预后的预测价值
编辑人员丨6天前
目的:探讨基于机器学习的 18F-FDG PET影像组学特征对≥60岁弥漫性大B细胞淋巴瘤(DLBCL)患者的预后评估价值。 方法:回顾性分析2011年3月至2019年11月166例未经治疗的DLBCL患者(年龄≥60岁)的 18F-FDG PET/CT资料,其中男88例、女78例,年龄60~93岁;训练组115例,验证组51例。对患者PET图像进行病灶勾画及影像组学特征提取,运用3种机器学习方法[最小绝对收缩和选择算子(LASSO)、随机森林(RF)和极端梯度提升(Xgboost)]筛选特征,采用支持向量机(SVM)对特征进行分类并生成影像组学标签(RS),对患者总生存(OS)进行预测。根据Cox比例风险回归模型构建多参数模型,并通过一致性指数(C-index)进行评估。 结果:共提取1 421种影像组学特征,筛选出10个预测效能强的特征并生成RS。单因素Cox回归分析示,RS[风险比( HR)=5.685, 95% CI: 2.955~10.939; P<0.001]是OS的危险因素。构建出包含RS、代谢特征及临床风险因素的多参数模型,其较临床模型、基于PET模型及美国国家综合癌症网络国际预后指数(NCCN-IPI)在预测OS上具有更高的效能(训练组C-index:0.752、0.737、0.739、0.688;验证组C-index:0.845、0.798、0.844、0.775)。 结论:基于机器学习 18F-FDG PET影像组学特征的RS是≥60岁DLBCL患者生存预后的预测因素。构建的包含影像组学特征的多参数模型能较好地预测患者预后。
...不再出现此类内容
编辑人员丨6天前
-
基于SHAP值特征选择的γ通过率分类预测及解释
编辑人员丨6天前
目的:探索SHAP值结合极端梯度提升树(XGBoost)算法的特征选择技术来构建调强放疗γ通过率预测模型的可行性和有效性,并给出相应的模型解释。方法:回顾性分析2020年11月至2021年11月在湖南省肿瘤医院接受盆腔固定野调强放射治疗的196例肿瘤患者采用基于模体测量方式的调强放疗计划的剂量验证结果,γ通过率标准为3%/2 mm、10%剂量阈值。提取基于剂量文件的影像组学特征并使用SHAP值结合XGBoost算法进行特征筛选后构建预测模型。分别选取特征数量为50、80、110、140个,构建四种机器学习分类模型,计算曲线下面积(AUC)值、召回率及F1分数评估预测模型的分类性能。结果:基于SHAP值特征选择的110个特征构建的预测模型AUC值为0.81,召回率达到0.93,F1分数为0.82,均优于其他三个模型。结论:针对盆腔肿瘤调强放疗计划,可以采用SHAP值与XGBoost算法结合以选择用于预测的最佳影像组学特征子集来构建γ通过率的预测模型,并能通过SHAP值给出模型输出解释,可能在理解依赖机器学习模型所做的预测方面提供价值。
...不再出现此类内容
编辑人员丨6天前
-
急性前循环大血管闭塞性卒中血管再通后恶性脑水肿发生的预测模型
编辑人员丨6天前
目的:基于Logistic回归模型和XGBoost算法模型构建前循环急性大血管闭塞性卒中(ALVOS)血管再通后恶性脑水肿(MBE)发生的预测模型,并比较预测性能。方法:回顾性选取2014年3月—2020年6月于江阴市中医院行早期血管内治疗(EVT)后闭塞血管成功再通的前循环ALVOS患者382例,采用随机数字表法按7∶3的比例将患者分为训练组( n=267)和测试组( n=115),根据患者闭塞血管成功再通后是否发生MBE,将训练组分为MBE组( n=41)和非MBE组( n=226)。分别比较训练组与测试组及训练组中MBE组与非MBE组的基线资料、治疗情况、颅脑计算机断层扫描灌注成像检查结果,包括年龄、入院美国国立卫生研究院卒中量表(NIHSS)评分、脑侧支循环分级、脑血容量等指标。采用Logistic回归模型和XGBoost算法模型筛选闭塞血管成功再通的前循环ALVOS患者发生MBE的预测因素,比较两个模型的区分度和校准度。符合正态分布的计量资料以均数±标准差( ± s)表示,两组间比较采用独立样本 t检验,非正态分布的计量资料以 M( Q1, Q3)表示,采用独立样本Mann-Whitney U检验,计数资料组间比较采用 χ2检验。 结果:训练组和测试组患者的基线资料、治疗情况、颅脑计算机断层扫描灌注成像检查结果差异无统计学意义( P>0.05);MBE组患者的年龄、入院收缩压、入院NIHSS评分、高血压比例、脑侧支循环0~2级比例、取栓次数>3次比例、发病至血管再通时间、脑血容量分别为(68.95±8.04)岁、(146.71±22.73) mmHg、17(13,21)分、87.80%、82.93%、68.29%、(365.64±87.83) min、(32.56±5.73) mL/100 g,明显高于非MBE组[(60.27±7.13)岁、(137.92±19.58) mmHg、14(10,18)分、73.01%、60.62%、2.65%、(307.59±74.05) min、(27.49±5.46) mL/100 g]( P<0.05);Logistic回归模型结果表明,年龄、入院NIHSS、脑侧支循环分级、取栓次数、发病至血管再通时间是前循环ALVOS患者行EVT后闭塞血管成功再通后发生MBE的预测因素( P<0.05)。XGBoost算法模型重要特征评分中排前五位的为脑侧支循环分级34分、取栓次数27分、发病至血管再通时间25分、入院NIHSS评分22分、年龄16分。训练组中,Logistic回归模型的曲线下面积为0.816(95% CI:0.749~0.883),Hosmer-Lemeshow检验显示 χ2=1.547, P=0.438;XGBoost算法模型的曲线下面积为0.856(95% CI:0.799~0.913),Hosmer-Lemeshow检验显示 χ2=1.021, P=0.998。 结论:Logistic回归模型和XGBoost算法模型对前循环ALVOS患者行EVT后闭塞血管成功再通后MBE发生的预测性能相当,且脑侧支循环分级、取栓次数、发病至血管再通时间、入院NIHSS评分以及年龄可作为预测因子。
...不再出现此类内容
编辑人员丨6天前
-
可解释的机器学习模型预测缺血性脑卒中患者预后研究
编辑人员丨6天前
目的:探讨可解释的机器学习模型预测急性缺血性脑卒中预后的应用价值。方法:选取广东医科大学附属湛江中心医院神经内科自2020年3月至2023年10月实施静脉溶栓治疗的296例急性缺血性脑卒中患者为研究对象,随访3个月后使用改良Rankin量表评估预后(0~2分定义为预后良好,3~6分定义为预后不良)。回顾性收集患者的临床资料,并采用多因素Logistic回归分析筛选出患者预后的独立影响因素。以3∶2比例将患者随机分为训练集( n=178)和测试集( n=118),以预后独立影响因素为特征变量训练10种机器学习模型(逻辑回归、随机森林、支持向量机、朴素贝叶斯、线性判别分析、混合判别分析、灵活判别分析、梯度增强机、极端梯度提升和分类梯度提升),分别使用校准曲线、精确-召回曲线、精确-召回增益曲线及受试者工作特征曲线评估这10种机器学习模型的预测性能,使用Shapley加法解释(SHAP)对机器学习模型附加解释和可视化(包含全局解释和局部解释)。 结果:296例患者中预后不良72例。年龄( OR=1.039,95% CI:1.008~1.072, P=0.015)、美国国立卫生研究院卒中量表评分( OR=1.213,95% CI:1.000~1.337, P<0.001)、格拉斯哥昏迷量表评分( OR=0.470,95% CI:0.289~0.765, P=0.002,)、卒中预测工具-Ⅱ评分( OR=1.257,95% CI:1.043~1.516, P=0.016)、C反应蛋白水平( OR=1.709,95% CI:1.398~2.087, P<0.001)和血小板计数( OR=0.988,95% CI:0.978~0.998, P=0.016)是患者预后的独立影响因素。在10种机器学习模型中,极端梯度提升模型预测患者预后的性能最高(校准曲线评估示一致性指数为0.896,精确-召回曲线评估示曲线下面积为0.791,精确-召回增益曲线示曲线下面积为0.363,受试者工作特征曲线示曲线下面积为0.856)。全局解释中SHAP直观图显示特征变量的重要性排序依次为C反应蛋白、美国国立卫生研究院卒中量表评分、血小板计数、格拉斯哥昏迷量表评分、卒中预测工具-Ⅱ评分和年龄;SHAP散点图可视化了6个特征变量的贡献方向,呈"两端分布"现象;SHAP依赖图显示了6个特征变量的观测值与SHAP值间的依赖关系,其中C反应蛋白趋势最为显著。SHAP力图为单个样本提供了局部解释,使得极端梯度提升模型更加透明和可解释性。 结论:基于年龄、美国国立卫生研究院卒中量表评分、格拉斯哥昏迷量表评分、卒中预测工具-Ⅱ评分、C反应蛋白水平和血小板计数为特征变量的极端梯度提升模型预测急性缺血性脑卒中患者预后的性能最优,在此基础上结合SHAP进行模型解释和可视化,有助于理解各特征变量对预测结果的贡献大小及方向。
...不再出现此类内容
编辑人员丨6天前
-
基于磁共振高分辨T2WI影像组学预测直肠癌新辅助治疗后病理完全反应的研究
编辑人员丨6天前
目的:探讨基于磁共振高分辨T2WI影像组学方法对预测直肠癌新辅助治疗后病理完全反应(pCR)的价值。方法:回顾性分析我院2018年1月至2019年3月新辅助治疗前接受磁共振高分辨T2WI成像检查并经病理证实的80例直肠癌患者,在高分辨T2WI图像上手动勾画病灶容积感兴趣区(VOI)后提取影像组学特征,采用最小绝对值收缩算子(LASSO)算法进行降维,筛选对肿瘤pCR有价值的特征,利用Random算法将数据随机分为训练集( n=64)与测试集( n=16)进行机器学习,建立决策树(DT)、逻辑回归(LR)、随机森林(RF)、极限梯度增强树(XGBoost)4种机器学习模型并绘制ROC曲线,分别计算AUC、敏感性、特异性及95% CI,采用DeLong检验比较ROC曲线差异。 结果:80例直肠癌患者pCR 15例,占18.75%;非pCR 65例,占81.25%。共提取1 409个影像组学特征,经LASSO算法降维后筛选出8个最有价值的特征。测试集DT、LR、RF、XGBoost 4种分类器模型的AUC分别为0.870、0.801、0.912、0.945,其中XGBoost分类器模型的AUC最大,与DT、LR、RF分类器模型相比较,差异具有统计学意义( P=0.008; P=0.006; P=0.009);其他3种模型两两比较,差异均无统计学意义( PLR-RF=0.083; PDT-LR=0.113; PDT-RF=0.879)。4种分类器模型敏感性分别为78.57%、64.29%、78.57%、85.71%,特异性分别为95.38%、84.62%、92.31%、98.46%,95% CI分别为0.775~0.935、0.696~0.882、0.827~0.964、0.870~0.984。 结论:基于高分辨T2WI图像的影像组学对直肠癌新辅助治疗后pCR有预测价值,其中XGBoost模型预测效能优于DT、LR、RF,可以用于辅助临床制定个体化治疗决策。
...不再出现此类内容
编辑人员丨6天前
