-
基于无人机影像的鼠害地秃斑识别算法筛选
编辑人员丨1秒前
鼠害型秃斑是反映草地鼠害的重要表征.利用无人机遥感技术识别高原鼠兔危害型秃斑对于评价其危害情况具有重要意义.本研究基于无人机可见光影像,使用最小距离(MinD)、最大似然(ML)、支持向量机(SVM)、马氏距离(MD)和神经网络(NN)5种监督分类算法对高原鼠兔危害地特征进行分类识别,并采用混淆矩阵对5种分类方法精度进行评价.结果表明:相较于其他3种方法,NN和SVM对高原鼠兔危害地特征进行识别分类的效果更好.其中,NN对草地与秃斑2种目标地物的制图精度分别为98.1%和98.5%,用户精度分别为98.8%和97.7%,模型总体精度为98.3%,Kappa系数为0.97,像元错分、漏分现象较低.经实践验证,NN表现出较好的稳定性.综上,神经网络方法是高寒草甸鼠害型秃斑识别的优选方法.
...不再出现此类内容
编辑人员丨1秒前
-
机器学习优化能谱CT预测胃腺癌的浸润性
编辑人员丨1秒前
目的 探讨机器学习(ML)算法结合能谱CT定量参数和临床模型在预测胃腺癌(GAC)患者淋巴血管浸润(LVI)和神经周围浸润(PNI)的潜在价值.方法 收集2017年12月-2022年5月经病理证实的GAC患者114例.研究参数涉及血清肿瘤标志物、CT-TN分期、CT评估壁外血管浸润(CT-EMVI)以及能谱CT定量参数.通过WEKA软件的Best-First算法进行特征筛选,并运用贝叶斯网络(BN)及支持向量机(SVM)算法建立模型.结果 相较于LVI/PNI阴性组,LVI/PNI阳性组中CT-T3~4期、CT-N阳性、CT-EMVI阳性、血清肿瘤标志物[糖类抗原(CA)72-4和CA19-9]更为常见,能谱CT参数也更高,差别均有统计学意义(P<0.05).经特征选择,关键变量包括CT-T分期、CT-EMVI、VP-NIC和EP-70 keV CT值.基于这些变量,分别使用BN和SVM构建临床参数模型、能谱CT参数模型和混合模型,共6个模型.6个模型均展现了高预测性能,无过拟合现象.BN的混合模型预测性能最佳,AUC值为0.890~0.933,Delong检验显示其在统计学上具有显著优势(P<0.05);而SVM的混合模型与另外2种模型间的差别无统计学意义(P>0.05).结论 结合临床和能谱CT参数的ML模型能够高效能评估GAC患者的LVI和PNI状态,其中BN混合模型的准确性最高.
...不再出现此类内容
编辑人员丨1秒前
-
基于可解释性机器学习模型的轻型缺血性卒中复发预测研究
编辑人员丨6天前
目的 利用可解释的机器学习模型,探讨轻型缺血性卒中(minor ischemic stroke,MIS)2年内复发相关危险因素.方法 回顾性收集2020年7-12月山西省心血管病医院神经内科MIS患者一般资料、实验室结果、影像学等资料,单因素分析进行复发危险因素变量筛选,合成少数过采样技术-标称连续处理数据不平衡,数据集按8∶2的比例分为训练集与测试集,网格搜索10折交叉验证构建轻量梯度提升机(light gradient boosting machine,LightGBM)、支持向量机(support vector machine,SVM)模型,并与逻辑回归(logistic regression,LR)模型进行比较,基于ROC的AUC、校准曲线分别评价模型的区分度与校准度,性能最好的模型通过Shapley加性解释(Shapley additive explanation,SHAP)模型对预测结果进行解读.结果 本研究共纳入520例MIS患者,2年内复发93例(17.9%),测试集中LightGBM、SVM、LR预测患者2年内复发的AUC分别为0.935(95%CI 0.896~0.973)、0.833(95%CI 0.770~0.896)、0.764(95%CI 0.691~0.835),准确度分别为0.890、0.773、0.693,布里尔分数分别为0.105、0.167、0.200.结果 显示LightGBM模型性能最优,基于SHAP的LightGBM可解释模型重要性前5的是舒张压、年龄、糖尿病、LDL-C、吸烟.结论 本研究建立的LightGBM模型预测效果良好,可为MIS患者2年内复发的预测提供借鉴.通过SHAP可解释性帮助临床医师更好地理解预测模型结果背后的原因,对MIS患者做出更个性化与合理化的临床决策.
...不再出现此类内容
编辑人员丨6天前
-
基于机器学习的流行性感冒中医辨证模型研究
编辑人员丨6天前
目的 通过机器学习方法对流行性感冒临床证候学资料进行训练,获得流感辨证模型.方法 收集2019年12月-2022年3月就诊于中日友好医院发热门诊的流行性感冒患者病历资料,使用数据采集系统进行数据处理,将不同数据处理过程产生的数据分别存储,以逻辑回归、决策树、朴素贝叶斯、支持向量机、多层感知机、lightGBM和随机森林为备选模型,通过Optuna进行超参数优化选择,并在各数据集中分别训练模型,以macro-F1评分为核心指标,对模型的预测性能进行评价.结果 整理得到训练样本1 011个,其中风热犯卫证453个、风寒束表证152个、表寒里热证406个;得到用于训练的数据集8个,包含数据80份.经训练,逻辑回归、决策树、朴素贝叶斯、支持向量机、多层感知机、lightGBM、随机森林模型的macro-F1评分分别为0.783 0、0.774 2、0.731 5、0.782 4、0.716 7、0.793 8、0.815 3.加权样本能显著提高平均模型性能,而主成分分析降维会降低平均模型性能.单一模型中,逻辑回归模型预测性能最佳;集成方法模型中,随机森林模型预测性能最佳.结论 在样本量较小的情况下,流行性感冒中医辨证模型使用逻辑回归、决策树、支持向量机和lightGBM较为适宜,随着样本量增加,逻辑回归、支持向量机、lightGBM和随机森林可能更为合适.不同数据处理方式会影响模型性能,对证型典型程度信息的采集有利于提高模型性能.
...不再出现此类内容
编辑人员丨6天前
-
CT影像组学模型对Ⅰ期尘肺病的诊断价值
编辑人员丨6天前
目的 探讨基于胸部CT影像组学特征构建的模型对Ⅰ期尘肺病的诊断价值.方法 选取 202 例诊断为尘肺Ⅰ期和 199 例健康体检者的临床及胸部CT资料,按照 7:3 的比例随机分为训练集组及验证集组,使用 3D-slicer软件在CT肺窗图像上勾画感兴趣区(ROI)并提取特征,利用最小绝对收缩和选择算子(LASSO)算法对影像特征进行筛选,然后采用支持向量机(SVM)算法,建立CT组学模型并采用受试者工作特征曲线下面积(AUC)和决策曲线分析(DCA),评估预测模型的效能和临床实用性.结果 共提取出 851 个特征,最终筛选出 9 个特征建立CT影像组学模型,该模型训练集组的AUC为 0.930(95%CI 0.901~0.963),验证集组的AUC为 0.820(95%CI 0.742~0.895),DCA曲线显示该模型具有较好的净收益.结论 基于CT图像的影像组学模型能有效鉴别正常和Ⅰ期尘肺,对于Ⅰ期尘肺有重要的诊断价值.
...不再出现此类内容
编辑人员丨6天前
-
基于瘤内和瘤周影像组学模型预测肝细胞癌微血管侵犯的临床应用价值:一项多中心研究
编辑人员丨6天前
目的本研究旨在评估瘤内和瘤周影像组学模型对肝细胞癌(hepatocellular carcinoma,HCC)微血管侵犯(microvascular invasion,MVI)的预测价值.材料与方法回顾性分析2016年至2023年间在三家医院经手术病理证实为HCC患者的钆塞酸二钠(Gd-EOB-DTPA)增强MRI图像,以及性别、年龄、肿瘤最大径、甲胎蛋白(alpha-fetoprotein,AFP)、丙氨酸转氨酶(alanine aminotransferase,ALT)、天冬氨酸转氨酶(aspartate aminotransferase,AST)和有无乙肝7项临床信息.在动脉期、门静脉期和肝胆期图像中勾画瘤内及瘤周5 mm、10 mm感兴趣区域(region of interest,ROI),从中提取影像组学特征;训练集中,运用多因素logistic回归分析筛选MVI的独立临床预测因素;应用支持向量机(support vector machine,SVM)建立瘤内模型、瘤周模型、瘤内联合瘤周模型、临床模型和临床影像组学模型共10种模型,采用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的预测能力,以DeLong检验比较各模型ROC曲线下面积(area under the curve,AUC)的差异.结果肿瘤最大直径[优势比(odds ratio,OR):1.449,95%置信区间(confidence interval,CI):1.212~1.733]及AFP(OR:1.645,95%CI:0.665~4.071)是基于训练集的MVI独立临床预测因子.验证集中,临床模型、瘤内模型、瘤周模型、瘤内+瘤周模型及临床影像组学模型预测HCC MVI的AUC值分别为0.728、0.764~0.820、0.791~0.795、0.804~0.828和0.747,瘤内+瘤周5 mm模型、瘤内+瘤周10 mm模型的AUC值分别为0.828(95%CI:0.728~0.929)、0.804(95%CI:0.696~0.913).各模型中,瘤内+瘤周5 mm模型与临床模型、临床影像组学模型的AUC差异具有统计学意义(P=0.039,0.028),其余模型间的AUC差异均无统计学意义(P>0.05).结论基于Gd-EOB-DTPA增强MRI影像组学模型可用于术前预测HCC MVI,其中瘤内+瘤周5 mm模型对HCC MVI有较高的预测能力,可为临床制订个体化治疗方案提供依据.
...不再出现此类内容
编辑人员丨6天前
-
基于磁共振影像组学和语义特征对高级别胶质瘤和转移瘤的鉴别研究
编辑人员丨6天前
目的本研究旨在结合传统MRI序列及增强检查,提取多模态高通量影像组学特征并联合语义特征,使用不同的机器学习分类器构建不同的模型并绘制列线图来鉴别高级别胶质瘤(high-grade glioma,HGG)和单发性脑转移瘤(solitary brain metastasis,SBM).材料与方法本研究对101名患者的多参数MR图像进行了回顾性分析,由两位资深医师标定肿瘤感兴趣区,然后对每个序列分别提取影像组学特征后进行组合,共提取428组影像组学特征.为消除人为标定差异,进行组内相关系数一致性检验,并运用最大相关最小冗余算法选取最具相关性的特征,然后进一步通过最小绝对收缩和选择算子算法筛除冗余特征.本研究采用支持向量机、逻辑回归、随机森林及K近邻四种算法建立分类模型.结合放射科医生评估的七项语义特征,通过卡方检验和多因素分析去除差异无统计学意义的语义特征.然后结合组学特征建立综合模型并绘制列线图.最终,评价各模型的诊断能力,以确定最优分类器.结果HGG及SBM患者建立的影像组学模型中LR的受试者工作特征曲线下面积(area under the curve,AUC)值最高,训练集与测试集分别为0.90和0.90.语义特征建立的模型中随机森林模型性能最好,训练集和测试集AUC分别为0.82和0.87.语义特征联合影像组学评分后采用逻辑回归建立的模型性能最好,训练集和测试集AUC分别为0.91和0.92.结论本研究使用影像组学机器学习分类器并联合其他图像语义特征绘制列线图对HGG及SBM进行鉴别,这是一种非侵入性方法,具有较好的准确性,为临床决策和实践提供了较大的帮助.
...不再出现此类内容
编辑人员丨6天前
-
列线图与机器学习算法预测中老年龋齿的比较研究
编辑人员丨6天前
目的 对比列线图与不同机器学习算法构建中老年人龋齿预测模型的效能.方法 采用多阶段分层随机抽样法,选取南宁市、贵港市、崇左市510名中老年人为研究对象,进行问卷调查及口腔检查.采用单因素分析和Lasso回归筛选相关变量,使用多因素logistic回归分析确定最终独立影响因素.基于显著特征,建立列线图预测模型,并运用线性判别分析(LDA)、偏最小二乘算法(PLS)、距离多普勒算法(RDA)、广义线性模型(GLM)、随机森林(RF)、支持向量机(SVM)核函数(SVM-Radial)及SVM线性核函数(SVM-Linear)7种机器学习算法构建7种龋齿风险预测模型.采用受试者工作特征(ROC)曲线下面积(AUC)中位数评价各模型预测性能,以及不同变量筛选方法所构建模型的预测性能.结果 中老年人龋齿检出率为71.18%.经过特征筛选后最终保留5个预测因子,分别是年龄(OR=0.945,95%CI:0.917~0.973)、刷牙频率(OR=0.688,95%CI:0.475~0.997)、过去1年是否洗牙(OR=0.303,95%CI:0.103~0.890)、牙存留数(OR=1.062,95%CI:1.038~1.087)和口腔健康评估量表(OHAT)得分(OR=1.363,95%CI:1.234~1.505).各模型对比结果显示,RF算法所构建的预测模型表现最佳,AUC中位数为0.747,其次为列线图,AUC中位数为0.733.单因素+Lasso+多因素logistic(简称Lasso+logistic)筛选自变量构建预测模型的AUC中位数均高于RF算法筛选自变量构建的预测模型.结论 基于Lasso+logistic筛选变量,RF较列线图及其他机器学习算法在中老年龋齿预测中提供了更可靠的预测性能.
...不再出现此类内容
编辑人员丨6天前
-
基于线粒体功能探讨温脾通络开窍方治疗阿尔茨海默病的分子机制
编辑人员丨6天前
目的 基于生物信息学、网络药理学、免疫浸润分析和机器学习等方法并结合实验验证探讨温脾通络开窍方调节线粒体功能治疗阿尔茨海默病(Alzheimer's disease,AD)的分子机制.方法 获取差异表达基因(differentially expressed genes,DEGs)进行相关性分析、KEGG分析以及免疫浸润分析.对公用数据集样品聚类分类后分析免疫细胞差异,构建机器学习模型、筛选特征基因并构建风险预测列线图模型.建立AD大鼠模型,进行水迷宫实验、HE染色及RT-qPCR检测,对数据挖掘的结果进行动物实验验证.结果 DEGs相互联系、调节免疫系统并调控P53(tumor protein 53,p53)信号通路.结果 显示有 13 个差异表达基因,并和免疫细胞在亚型分布上有差异.最佳机器学习模型是支持向量机模型(support vector machine,SVM),评分前 5 的特征基因是MAOB、MAOA、CASP9、Bcl-2、ABAT.风险预测列线图模型的准确性高,预测误差的风险小.动物实验结果显示中药组大鼠学习认知功能障碍和神经损伤比模型组明显减轻,特征基因的mRNA相对表达量与数据挖掘的结果具有一致性.结论 温脾通络开窍方可能是通过13 个差异性分子靶点相互网络调控、P53 信号通路和免疫调控作用实现调节线粒体功能以缓解AD症状.
...不再出现此类内容
编辑人员丨6天前
-
基于多参数MRI的影像组学融合模型对乳腺癌腋窝淋巴结转移的术前预测价值
编辑人员丨6天前
目的:探讨基于多参数MRI的影像组学融合模型在乳腺癌术前预测腋窝淋巴结(ALN)转移的应用价值。方法:回顾性队列研究。纳入山西省肿瘤医院2020年8月—2021年9月经病理证实的272例乳腺癌患者的多参数MRI及临床病理资料。患者均为女性,年龄28~79(53.0±10.9)岁,其中ALN阳性107例、ALN阴性165例。按照7∶3的比例随机将患者分为训练组(191例)和验证组(81例)。从T 2加权像(T 2WI)、表观弥散系数(ADC)图和增强T 1加权像(cT 1WI)序列中提取影像组学特征。采用单因素逻辑回归、相关性分析和Boruta算法3个步骤进行特征选择,然后采用支持向量机(SVM)、随机森林(RF)和逻辑回归(LR)3种机器学习方法构建影像组学模型,并基于最优模型计算每位患者的影像组学分数(Radscore)。同时,通过多因素逐步回归分析筛选乳腺癌ALN转移的独立危险因素并构建临床模型。最后,联合Radscore和临床独立危险因素构建融合模型,并绘制列线图。采用受试者操作特征曲线、校准曲线和决策曲线(DCA)来评价模型对乳腺癌ALN转移的预测性能及临床效益。 结果:训练组和验证组患者肿瘤位置比较,差异有统计学意义( P<0.05);训练组中ALN阳性与ALN阴性患者间的肿瘤位置、MRI评估淋巴结状态比较,验证组中ALN阳性与ALN阴性患者间的雌激素受体、分子亚型及MRI评估淋巴结状态比较,差异均有统计学意义( P值均<0.05)。基于多参数MRI降维选择后,得到了6个与ALN转移呈显著相关的影像组学特征( P值均<0.05)。在训练组和验证组中,SVM、RF和LR模型均表现出很好的预测能力,AUC分别为0.784、0.826、0.703和0.733、0.817、0.703,其中RF模型效能最高。单因素、多因素回归分析显示,MRI评估淋巴结状态是乳腺癌ALN转移的独立预测因子[比值比(95%可信区间)=10.909(5.210~24.511), P<0.001],采用这一指标构建临床模型。联合Radscore和MRI评估ALN状态的融合模型在训练组和验证组中均表现出更好的性能,AUC分别为0.867和0.866,且其诊断效能均优于上述3种机器学习模型和临床模型(AUC分别为0.719和0.700)。DCA显示,3种机器学习模型、临床模型和融合模型均有一定的临床效益,其中融合模型的净收益值最大。 结论:基于多参数MRI影像组学特征和联合MRI评估淋巴结状态的融合模型有助于术前准确预测乳腺癌ALN转移状态。
...不再出现此类内容
编辑人员丨6天前
