-
基于磁共振影像组学和语义特征对高级别胶质瘤和转移瘤的鉴别研究
编辑人员丨1周前
目的本研究旨在结合传统MRI序列及增强检查,提取多模态高通量影像组学特征并联合语义特征,使用不同的机器学习分类器构建不同的模型并绘制列线图来鉴别高级别胶质瘤(high-grade glioma,HGG)和单发性脑转移瘤(solitary brain metastasis,SBM).材料与方法本研究对101名患者的多参数MR图像进行了回顾性分析,由两位资深医师标定肿瘤感兴趣区,然后对每个序列分别提取影像组学特征后进行组合,共提取428组影像组学特征.为消除人为标定差异,进行组内相关系数一致性检验,并运用最大相关最小冗余算法选取最具相关性的特征,然后进一步通过最小绝对收缩和选择算子算法筛除冗余特征.本研究采用支持向量机、逻辑回归、随机森林及K近邻四种算法建立分类模型.结合放射科医生评估的七项语义特征,通过卡方检验和多因素分析去除差异无统计学意义的语义特征.然后结合组学特征建立综合模型并绘制列线图.最终,评价各模型的诊断能力,以确定最优分类器.结果HGG及SBM患者建立的影像组学模型中LR的受试者工作特征曲线下面积(area under the curve,AUC)值最高,训练集与测试集分别为0.90和0.90.语义特征建立的模型中随机森林模型性能最好,训练集和测试集AUC分别为0.82和0.87.语义特征联合影像组学评分后采用逻辑回归建立的模型性能最好,训练集和测试集AUC分别为0.91和0.92.结论本研究使用影像组学机器学习分类器并联合其他图像语义特征绘制列线图对HGG及SBM进行鉴别,这是一种非侵入性方法,具有较好的准确性,为临床决策和实践提供了较大的帮助.
...不再出现此类内容
编辑人员丨1周前
-
基于列线图及机器学习的免疫检查点抑制剂相关性肺炎风险预测模型构建及验证
编辑人员丨1周前
目的:运用机器学习算法及列线图,构建和验证免疫检查点抑制剂相关性肺炎(CIP)风险预测模型,旨在为更好的辅助临床护理人员筛查CIP的高危人群,提供准确直观的方法。方法:采用回顾性病例对照研究。选取2019年1月至2022年2月南方医科大学珠江医院就诊的230例使用免疫检查点抑制剂治疗的肿瘤患者,使用医院电子病历系统收集患者的资料。应用5种机器学习算法和列线图构建预测模型,在独立测试集进行模型的验证,最后依据评价指标AUC、准确率等评估预测模型的区分度及稳定性。结果:6种模型均提示,肺部基础疾病、吸烟史、血清白蛋白值≤35 g/L、胸部放疗史是促进CIP发生的重要影响因素。K最近邻、支持向量机(SVM)、朴素贝叶斯、决策树和随机森林构建的CIP预测模型的AUC分别为0.647、0.696、0.930、0.870、0.934。列线图构建的模型AUC为0.813,预测性能较好,但低于机器学习算法中表现最佳的随机森林模型(AUC=0.934)。结论:与列线图相比,基于机器学习算法建立的CIP的风险预测模型具有更高的诊断价值,但列线图构建的模型可更直观评估患者风险,建议在列线图基础上,结合机器学习算法,可增加预测模型的准确性及实用性。
...不再出现此类内容
编辑人员丨1周前
-
机器学习方法构建老年心房颤动合并冠心病患者远期死亡的预测模型研究
编辑人员丨1周前
目的:利用机器学习方法建立老年心房颤动(房颤)合并冠心病患者的远期死亡预测模型,并确定相应的危险因素。方法:回顾性队列研究,连续入组2013年1月至2015年3月北京医院收治的60岁及以上房颤合并冠心病患者329例,男性183例(55.6%)例,女性146例(44.4%),年龄(77.8±7.3)岁,80岁及以上142例(43.2%)。失访11例(3.3%),死亡151例(45.9%),最后纳入分析的患者共318例。根据患者生存结局,将318例患者分为死亡组(151例)和存活组(167例)。此外,另选取2015年4—7月入院的60岁及以上房颤合并冠心病患者60例为外部数据验证集。采集人口统计学参数、合并疾病、辅助检查和临床治疗情况。随访至少6年,记录包括死亡在内的主要不良心脑血管事件(MACCE)。最后将入组患者按9∶1的比例随机分为训练集和测试集,通过机器学习算法建立不同模型预测房颤合并冠心病患者远期死亡率,并通过外部数据(60例)验证比较确立最优模型,利用Shapley加法解释算法对变量的重要性进行排序,得出排名前20位的特征变量,以确定危险因素。结果:329例患者中,总体中位随访时间77.0月(95% CI:54.0~84.0),失访11例(3.3%),死亡151例(45.9%)。通过分析得出支持向量机模型、k-近邻算法(KNN)模型、决策树模型、随机森林模型、ADABoost模型、XGBoost模型、Logistic回归模型预测远期死亡率的受试者工作特征曲线(ROC)下面积(AUC)分别为0.76、0.75、0.75、0.91、0.86、0.85和0.81。其中随机森林模型预测效能最高,其准确率达0.789,F1值高达0.806,且优于传统的Logistic回归模型(AUC:0.91比0.81, P<0.05)。D-二聚体、年龄、MACCE次数、左心室射血分数、人血白蛋白水平、贫血、纽约心脏病协会心功能分级、陈旧性心肌梗死病史、估测肾小球滤过率(eGFR)及静息心率是预测远期死亡率的重要危险因素。 结论:基于机器学习方法建立的随机森林模型可预测老年房颤合并冠心病患者的远期死亡率,具有较好的识别能力,其准确性高于传统的Logistic回归模型。可通过干预患者的D-二聚体水平、纠正低蛋白血症和贫血、改善心功能和控制静息心室率降低远期死亡率,改善患者远期预后。
...不再出现此类内容
编辑人员丨1周前
-
基于电子鼻技术的膀胱癌尿液VOCs标志物气体检测与识别
编辑人员丨1周前
目的:设计一款电子鼻,用于检测与识别膀胱癌尿液中的挥发性有机化合物(VOCs)标志物气体。方法:选取异丙醇、乙苯、乙酸和氨气作为目标气体,由8款金属氧化物气体传感器构建传感器阵列进行测试收集实验数据,并对不同特征归一化处理。通过递归特征消除(RFE)筛选出最佳特征子集,进一步引入主成分分析(PCA)和线性判别分析(LDA)降低数据维度便于可视化分析。此外,结合支持向量机(SVM)、随机森林(RF)、K最近邻(KNN)3种机器学习算法进行模型训练和验证。结果:特征数为12时,模型分类的准确率最高,特征子集由5个差值、5个灵敏度和2个积分组成,同时将数据降至12维;仅PCA无法区分4种气体,LDA分类效果明显好于PCA,除异丙醇与乙酸有小部分重叠区域,能够将乙苯、氨气很好地与前二者区分开,且样本点聚集在一起,聚类效果也更佳。SVM、RF和KNN的预测准确率分别为0.85、0.56、0.79,经过模型验证,PCA+SVM、LDA+RF和LDA+KNN的分类准确率分别为0.97、0.94、0.97。结论:设计了一款电子鼻,能够用于检测与识别膀胱癌尿液VOCs标志物气体。
...不再出现此类内容
编辑人员丨1周前
-
基于CT影像组学的机器学习模型预测胰腺癌门静脉-肠系膜上静脉侵犯的研究
编辑人员丨1周前
目的:探讨基于CT影像组学的机器学习模型预测胰腺癌门静脉-肠系膜上静脉(PV-SMV)侵犯的价值。方法:回顾性分析2010年1月至2021年7月南京医科大学附属无锡第二医院收治的156例经手术病理确诊的胰腺癌患者的临床、病理及术前CT影像资料,其中男性95例,女性61例,年龄(65.7±8.2)岁。所有入组患者按3∶2的比例划分训练集和验证集。通过患者术前增强CT提取肿瘤影像组学特征,采用最大相关最小冗余算法进行特征选择后,构建5种机器学习算法预测模型,并与常规影像特征诊断的受试者工作特征(ROC)曲线进行比较。结果:94例患者纳入训练集,62例纳入验证集。训练集和验证集中手术探查证实的PV-SMV侵犯病例分别为30例(31.9%)和25例(40.3%)。基于10个影像组学特征构建的5个机器学习模型中,LASSO回归模型的AUC优于随机森林、支持向量机、K近邻和朴素贝叶斯4个模型,差异有统计学意义(均 P<0.05)。与常规影像特征的诊断效能比较,LASSO回归模型在验证集中诊断PV-SMV侵犯具有更高的AUC(0.920比0.752)和更好的灵敏度(92.0%比86.5%),差异具有统计学意义(均 P<0.05)。 结论:基于CT影像组学的机器学习模型可实现胰腺癌PV-SMV侵犯的术前预测,LASSO回归模型较常规影像特征的诊断效能更高。
...不再出现此类内容
编辑人员丨1周前
-
基于MRI扩散加权成像和表观扩散系数的影像组学模型对甲状腺结节良恶性的鉴别诊断价值研究
编辑人员丨1周前
目的:探讨基于MRI扩散加权成像(DWI)和表观扩散系数(ADC)图像的影像组学模型鉴别诊断甲状腺结节良恶性的价值。方法:横断面研究。回顾性分析2019年1月至2022年12月中国医学科学院肿瘤医院深圳医院行甲状腺MRI检查的140例患者的148个甲状腺结节(良性50个,恶性98个)的临床资料。以结节为研究单位,使用留出法将甲状腺结节按照7∶3的比例随机分成训练集和测试集。对DWI和ADC图像进行感兴趣区勾画及组学特征提取,在训练集中采用观察者间一致性分析、 U检验、最小绝对收缩和选择算子算法、相关性分析进行特征筛选,使用支持向量机(SVM)、随机森林(RF)、K最近邻(KNN)和逻辑回归(LR)4个分类器对选取的特征构建模型,包括DWI模型、ADC模型和联合模型,并在测试集中对模型进行测试。以甲状腺结节病理结果为金标准,应用受试者工作特征(ROC)曲线评价影像组学模型鉴别诊断甲状腺结节良恶性的效能。 结果:本研究140例患者中,男40例,女100例,年龄(38.4±12.2)岁。经过特征筛选,11个DWI特征和11个ADC特征被用于构建模型。训练集中,基于同一分类器构建的不同模型间比较,联合模型的ROC曲线下面积(AUC)均高于相应的DWI模型和ADC模型。测试集中,SVM联合模型表现出最佳的模型预测效能[AUC为0.873(95% CI:0.740~0.954),准确度为75.6%,灵敏度为46.7%,特异度为90.0%,阳性预测值(PPV)为70.0%,阴性预测值(NPV)为77.1%],其AUC高于RF联合模型[AUC为0.836(95% CI:0.695~0.929),准确度为77.8%,灵敏度为40.0%,特异度为96.7%,PPV为85.7%,NPV为76.3%]、KNN联合模型[AUC为0.832(95% CI:0.691~0.927),准确度为77.8%,灵敏度为33.3%,特异度为100%,PPV为100%,NPV为75.0%]以及LR联合模型[AUC为0.813(95% CI:0.669~0.914),准确度为77.8%,灵敏度为60.0%,特异度为86.7%,PPV为69.2%,NPV为81.3%]。 结论:基于DWI和ADC图像特征的影像组学模型有助于鉴别诊断甲状腺结节良恶性,SVM联合模型的预测效能最佳。
...不再出现此类内容
编辑人员丨1周前
-
基于深度学习及Delta影像组学的唾液腺显像在甲状腺癌术后及 131I治疗后唾液腺损伤评估中的价值
编辑人员丨1周前
目的:探讨基于深度学习及Delta影像组学的唾液腺显像在评估甲状腺癌术后、 131I治疗后患者唾液腺损伤中的价值。 方法:回顾性收集2019年12月至2022年1月于桂林医学院附属医院接受甲状腺癌全切根治手术和 131I治疗的223例甲状腺乳头状癌患者[男46例,女177例,年龄(47.7±14.0)岁]的资料。患者在 131I治疗前、后均行唾液腺 99Tc mO 4- SPECT显像,根据显像结果将患者按唾液腺功能情况(正常与损伤)分类标注后按7∶3分为训练集和测试集;基于唾液腺最大放射性计数时的图像和本底放射性计数时的图像训练ResNet-34神经网络模型作为特征提取器,用于提取结构化图像特征数据;采用Delta影像组学的方法将2个时期的图像特征值相减,通过配对 t检验、Spearman秩相关性分析结合最小绝对收缩和选择算子(LASSO)算法进行特征筛选,建立逻辑回归(LR)、支持向量机(SVM)和K-最近邻(KNN)预测模型。将3种模型对测试集的唾液腺功能诊断情况与人工判读情况进行对比,并比较3种模型对测试集的AUC(Delong检验)。 结果:在测试集67例显像中,3位阅片医师的唾液腺功能诊断准确性分别为89.6%(60/67)、83.6%(56/67)和82.1%(55/67),所需时间分别为56、74和55 min;LR、SVM、KNN的判断准确性分别为91.0%(61/67)、86.6%(58/67)和82.1%(55/67),所需时间分别为12.5、15.3和17.9 s。3种影像组学模型均具有较好的分类预测能力,LR、SVM、KNN模型训练集AUC分别为0.972、0.965、0.943;测试集AUC分别为0.954、0.913、0.791,差异无统计学意义( z值:0.72、1.18、1.82,均 P>0.05)。 结论:基于深度学习及Delta影像组学的模型对甲状腺癌术后、 131I治疗后患者唾液腺损伤有较高的评估价值。
...不再出现此类内容
编辑人员丨1周前
-
基于汉语普通话共振峰参数的腭裂高鼻音自动识别研究
编辑人员丨1周前
目的:探讨提取腭裂语音中过高鼻音特征性共振峰参数建立的级联声道模型和小波包变换结合线性预测系数(LPC)2种算法模型,在识别腭裂患者高鼻音中的应用效果。方法:选取2015年10月至2018年12月,在四川大学华西口腔医院语音矫治专科就诊的859例腭裂患者,其中男421例,女438例,平均年龄12.1岁。正常语音216例,轻度高鼻音220例,中度高鼻音213例,重度高鼻音210例。按照汉语普通话测试工具收集包括词组、短句的语音样本共62 707份。运用级联声道模型、小波包变换结合LPC的语音信号识别方法提取共振峰参数,采用K近邻分类器,对数据进行分类,判别有无过高鼻音及具体等级。将2种算法模型的分类结果与人工语音评估金标准结果进行对比,运用卡方检验分析其准确性。结果:级联声道模型和小波包变换结合LPC提取共振峰参数这2种方法判断高鼻音有无的正确率分别为80.56%(692/859)和89.99%(773/859),对高鼻音等级判断的总正确率为72.29%(621/859)和88.13%(757/859),差异均具有统计学意义( P<0.05)。2种算法对每个高鼻音等级自动判别的正确率均为小波包变换结合LPC优于级联声道模型,且差异具有统计学意义( P<0.05)。2种方法对高鼻音等级类别的识别错误类型中,最严重的错误均为将正常语音判断为轻度高鼻音,小波包变换结合LPC法与级联声道模型分别达到了18.98%(41/216)与14.81%(32/216),但前者的其余错误率均在5%以下,优于后者。 结论:小波包变换结合LPC的算法与级联声道模型相比,在判断腭裂患者高鼻音有无及等级方面正确率更高,可辅助人工语音师对腭裂患者的语音评估。
...不再出现此类内容
编辑人员丨1周前
-
9种机器学习模型预测幕上深部自发性脑出血早期血肿扩张及预后不良的比较
编辑人员丨1周前
目的:比较9种机器学习模型对幕上深部自发性脑出血(SICH)患者发生早期血肿扩张及预后不良情况的预测性能。方法:回顾性研究。纳入2015年1月—2019年5月4家医院幕上深部SICH患者420例。其中男275例、女145例,年龄25~90(61.0±12.9)岁。420例患者按照7∶3的比例,采用完全随机法分为训练集294例和验证集126例。患者在72 h内复查CT,若血肿体积比初始体积增长>6 mL或>33%,判定存在早期血肿扩张。采用改良的Rankin评分量表(mRS)评估预后,以mRS>3分判定为预后不良。比较训练集和验证集的基线资料。采用随机森林、极限梯度提升算法(XGboost)、梯度爬升决策树、自适应提升算法、朴素贝叶斯、logistic回归、支持向量机、K近邻、多层感知机9种机器学习算法对早期血肿扩张及预后不良分别构建预测模型;在训练集中,依据各模型的灵敏度和特异度绘制受试者操作特征曲线,采用3折交叉验证取曲线下面积(AUC),比较各模型对早期血肿扩张及预后不良情况的预测性能,并在验证集测试模型的可靠性。结果:训练集和验证集患者基线资料比较差异均无统计学意义( P值均>0.05)。420例患者中,早期脑血肿扩张的患者有117例(27.86%);399例患者获随访,其中预后不良的患者有210例(52.63%)。预测早期血肿扩张:训练集中,9种机器学习模型的AUC为0.590~0.685,其中以XGboost模型最高,AUC为0.685±0.024;在验证集中,XGboost模型AUC为0.686[95%可信区间( CI)0.578~0.721]。预测预后不良:9种机器学习模型的AUC为0.703~0.852,其中logistic回归模型最高,AUC为0.852±0.041;而在验证集中,logistic回归模型AUC为0.894(95% CI 0.862~0.912)。 结论:9种机器学习算法模型中,XGboost对幕上深部SICH早期血肿扩张的预测性能最佳,而logistic回归模型对预后不良的预测性能最高;对于不同临床结局的预测,应选用合适的机器学习模型。
...不再出现此类内容
编辑人员丨1周前
-
基于机器学习的影像组学模型预测三阴性乳腺癌新辅助化疗远期预后的应用价值
编辑人员丨1周前
目的:探讨不同机器学习的影像组学模型预测三阴性乳腺癌(TNBC)新辅助治疗远期复发转移风险的价值。方法:回顾性分析2011年8月至2017年5月上海复旦大学附属肿瘤医院和上海交通大学医学院附属瑞金医院的150例接受新辅助化疗和手术切除后经病理组织学证实的TNBC患者临床及影像资料。将上海复旦大学附属肿瘤医院的109患者作为训练组,将上海交通大学医学院附属瑞金医院的41例患者作为验证组。基于治疗前动态对比增强MRI(DCE-MRI)提取的影像组学特征,并加入时间域特征,训练组使用最小绝对收缩和选择算子交叉验证法和递归特征消除法进行特征筛选。采用6种(逻辑回归、线性判别分析、K最近邻、朴素贝叶斯、决策树和支持向量机)具有监督学习的不同机器学习算法来预测远期复发转移的能力,使用ROC、准确率以及F1度量值评价6种算法的优劣,并通过验证组进行验证。结果:支持向量机算法在基于15个影像组学特征的复发转移模型中预测效果最好,具有最高的曲线下面积(训练组为0.917,验证组为0.859)、准确率(训练组为87.5%,验证组为82.9%)以及F1度量值(训练组为0.800,验证组为0.741)。15个影像组学特征中,时间域特征为12个、空间域特征为3个。结论:加入时间域特征的DCE-MRI机器学习影像组学模型有助于预测TNBC新辅助化疗的远期预后,为临床决策及随访管理提供支持。
...不再出现此类内容
编辑人员丨1周前
